Fractional order derivative of a function & fractional numbers' factorial.

  Рет қаралды 38,388

Ahmed Isam

Ahmed Isam

Күн бұрын

Пікірлер: 48
@johnnyfonseca354
@johnnyfonseca354 9 жыл бұрын
The exponential form of sine has 2j in the denominator, not 2.
@barost2010
@barost2010 10 жыл бұрын
excellent explanation! please do more videos about fractional calculus and it's application in engineering. another topic i am interested in are PDE's. maybe you are familiar with this topic and you can teach about it
@DrunkenUFOPilot
@DrunkenUFOPilot 4 жыл бұрын
Cool, fractional derivatives and fractional Fourier in the same video!
@devarora3770
@devarora3770 9 жыл бұрын
Great nicely explained...!!
@DrunkenUFOPilot
@DrunkenUFOPilot 4 жыл бұрын
Okay, now lets see you do fractionally iterated exponential functions. And of course, fractional derivatives of them, and using them in something resembling a Fourier transform, and of course fractionally iterating that!
@DrunkenUFOPilot
@DrunkenUFOPilot 4 жыл бұрын
... and set the order of iteration of all those things to sqrt(i)
@radhigam3091
@radhigam3091 4 жыл бұрын
Sr, very nice explanation.
@faizachishti5266
@faizachishti5266 6 жыл бұрын
good explanation
@yuriabreu8791
@yuriabreu8791 7 жыл бұрын
Thank you for this video. You teach well :)
@siddharthshivarkar3903
@siddharthshivarkar3903 4 жыл бұрын
Fourier transform is with respect to dw not with respect to dt
@dr.shalabhkumarmishra3571
@dr.shalabhkumarmishra3571 6 жыл бұрын
Excellent Work!! Can you share some video on "how to solve polynomials with fractional power" and "fractional derivative of Log (x)"
@kindofmagicmike
@kindofmagicmike 8 жыл бұрын
My one problem with this video is the fact that it ignores the inconsistency of the definition of Riemann and Euler definitions of the fractional derivative.
@hamzaa.8082
@hamzaa.8082 10 жыл бұрын
Thanks for uploading :) good luck!
@AhmedIsam
@AhmedIsam 10 жыл бұрын
subscribe please 3:)
@MrJohnsurf
@MrJohnsurf 8 жыл бұрын
Let's take the case of the half-derivative and consider the following desirable properties for half-derivatives: Let D stand for the derivative operator. Desirable properties (1), (2) & (3) for half-derivatives: (1) D^m (f) is single-valued and exists for polynomials and m can be 1/2 or any positive integer. (2) D^1/2(kf) = kD^1/2(f) (where k is a constant -- Constant Multiple Rule) (3) D^m(D^n(f)) = D^(m+n)(f) Law of Exponents) Then we will have the following sequence of consequences from (1), (2) & (3) above: Lemma 1: D^1/2(0) = 0 proof: D^1/2(0) = D^1/2(0*0) = 0*D^1/2(0) = 0 by (2) and assuming that D^1/2(0) is finite. Lemma 2: D^1/2(1) = k for some constant k proof: D(D^1/2(1)) = D^(1+1/2)(1) = D^1/2(D(1)) = D^1/2(0) = 0, so D^1/2(1) is a constant -- call it k. Lemma 3: D^1/2(1) = 0 (the above constant, k, is 0) proof: D^1/2(1) = k, so D^1/2(k) = D^1/2(D^1/2(1)) = D(1) = 0, but D^1/2(k) = D^1/2(k*1) = k*D^1/2(1) = k*k by (2) therefore k*k = 0, so k = 0 Lemma 4: D^1/2(x) = constant D(D^1/2(x)) = D^(1+1/2)(x) by (3) = D^1/2(D(x)) = D^1/2(1) = 0 Lemma 5: 1 = 0 1 = D(x) = D^1/2(D^1/2(x)) = D^1/2(constant) = D^1/2(constant*1) = constant*D^1/2(1) = constant*0 = 0 Therefore we can't have both the Constant Multiple Rule and the Law of Exponents holding for half-derivatives. So my questions to you are: 1) What restrictions must you apply on the set of functions you are trying to define half-derivatives on so that you don't run into the above contradiction? Polynomials have problems as shown above. 2) If you want to keep the set of functions that half-derivatives can be applied to include polynomials, then which of the laws are you willing to give up -- the Constant Multiple Rule or the Law of Exponents? Because of the above contradiction, you can't keep both rules... yet they seem like very natural rules you would want to keep and they hold for ordinary derivatives. Maybe D(D^1/2(f)) does not equal D^1/2(D(f)) and the half-derivative operation does not commute with ordinary derivatives -- in which case the Law of Exponents doesn't hold. It appears that you must give up the Law of Exponents or the Constant Multiple Rule or find some clever way to restrict the set of functions that fractional calculus is applied to. Which way from here for the fractional calculus? Do we give up commutation of fractional derivatives with ordinary derivatives and work without the Law of Exponents?
@DB-nl9xw
@DB-nl9xw 5 жыл бұрын
More videos like this!
@msdkabi4365
@msdkabi4365 10 жыл бұрын
Thank you very much, Can u suggest a book about this subject?
@DrunkenUFOPilot
@DrunkenUFOPilot 4 жыл бұрын
One of the great classics in fractional calculus is a book by Oldham & Spanier, "The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order"
@DrunkenUFOPilot
@DrunkenUFOPilot 4 жыл бұрын
I list other literature in my Quora answer to the question "Differential Equations: What is d^(1/2)x / (dy)^(1/2) " (bad attempt to write LaTeX formula in plain ascii. SAD!) (note the questioner has y, x reversed from usual usage) If YT allows links, go to: qr.ae/TcthvP
@djrobby20xx
@djrobby20xx 8 жыл бұрын
Hi Ahmed! Thanks a lot and keep up the good work... Ahmed! How can I find or use the fractional order in state space equation for its general solution? Example: dx/dt = Ax+B, whose solution is x1(t1,t0) = exp(A1(t1-t0))(x(t0)+A1^-1*B)-A1^-1*B and x2(t2,t1)= exp(A2(t2-t1))(x(t1)+A2^-1*B)-A2^-1*B for one periodic orbit of the system. If d^(1/2)x/dt^1/2=Ax+B.... x1(t1,t0) =??? and x2(t2,t1)=???
@sefatullapamiri3413
@sefatullapamiri3413 6 жыл бұрын
hi brother if u have any monograoh or theiss about fractional differential equation please send me that by this email address , sefatullahpamiri52@gmail.com
@djrobby20xx
@djrobby20xx 6 жыл бұрын
I wrote this two years ago... No answer obtained...
@djrobby20xx
@djrobby20xx 6 жыл бұрын
@@sefatullapamiri3413 Alexsi in Tallinn did a masters thesis on Fractional order... my email Langundo.songaa@gmail.com
7 жыл бұрын
hello, where can i get i similar explanation wrriten? any biobliography sugested?
@MuhannadGhazal
@MuhannadGhazal 10 жыл бұрын
hi my friend , here i am , subscribing your own channel , sorry for being late to , i'll watch all your series later,
@AhmedIsam
@AhmedIsam 10 жыл бұрын
A Warm welcome ... Enjoy ^^
@youcefyahiaoui1465
@youcefyahiaoui1465 6 жыл бұрын
oops! you forgot "j" in the denominator. It's actually divided by 2j for sin(x)...
@Sinanmmd
@Sinanmmd 5 жыл бұрын
Sinh(x)
@taimurzaman7322
@taimurzaman7322 5 жыл бұрын
thumbs up :)
@mohamedismail810
@mohamedismail810 5 жыл бұрын
What is the reference please
@axe863
@axe863 10 жыл бұрын
Even though fractional calculus is awesome, tempered fractional calculus is more applicable to real world applications.
@macmos1
@macmos1 8 жыл бұрын
axe863 what do you mean by tempered
@nuclearrazorify
@nuclearrazorify 8 жыл бұрын
Thank you!!!
@sefatullapamiri3413
@sefatullapamiri3413 6 жыл бұрын
hi brother if u have any monograoh or theiss about fractional differential equation please send me that by this email address , sefatullahpamiri52@gmail.com
@leomico6394
@leomico6394 5 жыл бұрын
At least,it shows the relationship between the gamma function and Laplace transformation
@youmah25
@youmah25 8 жыл бұрын
شكرا
@alirezamirghasemi
@alirezamirghasemi 7 жыл бұрын
Can`t we present the n`th derivative of Sin(x) as Sin(x + n(pi/2))?
@AhmedIsam
@AhmedIsam 7 жыл бұрын
Yes we can, that's a very interesting formula btw. Do you know how to derive it ?
@alirezamirghasemi
@alirezamirghasemi 7 жыл бұрын
unfortunately I don't know how to derive it analytically. but creating a pattern is very easy. Sin(x) = Sin(x + 0) Cos(x) = Sin(x + (pi/2) -Sin(x) = Sin (x + pi) -Cos(x) = Sin(x+ (3*pi/2)) I think Cos(x) can be interpreted as a scaled version Sin(x) that causes function to shift by 90 degrees just like j in complex numbers, when is multiplied it shifts the angle of point by 90 degrees.
@GAGANSACHDEVA04
@GAGANSACHDEVA04 8 жыл бұрын
Hi. There are some mistakes in your video. like Sine value in terms of exponential and also in fourier transforms....
@loganborghi5727
@loganborghi5727 7 жыл бұрын
yeah, when he did the 0.6th derivative of sin x he used sinh x formula
@pettPette
@pettPette 8 жыл бұрын
the vector v must be non-zero!
@msdkabi4365
@msdkabi4365 10 жыл бұрын
Thank you very much, Can u suggest a book about this subject?
@AhmedIsam
@AhmedIsam 10 жыл бұрын
Check out this amazing "simple" Indian ebook www.springer.com/engineering/computational+intelligence+and+complexity/book/978-1-4020-6041-0 please subscribe to encourage me to do more.
@msdkabi4365
@msdkabi4365 10 жыл бұрын
Tnx a lot doctor Ahmad
(FC01) What is Fractional Calculus
37:30
Let's Learn, Nemo!
Рет қаралды 10 М.
Imaginary derivative of x
22:48
Dr Peyam
Рет қаралды 105 М.
UFC 308 : Уиттакер VS Чимаев
01:54
Setanta Sports UFC
Рет қаралды 870 М.
Half derivative ln(x)
25:21
Dr Peyam
Рет қаралды 24 М.
Fractional-order Derivative
7:28
Red Green Blue
Рет қаралды 7 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 114 М.
Half Derivative of x
20:06
Dr Peyam
Рет қаралды 148 М.
2. Understanding Fourier Transform, Theory + Derivation.
26:19
Ahmed Isam
Рет қаралды 70 М.
Mamikon Gulian on Fractional Calculus & Hidden Physics
5:20
Brown University
Рет қаралды 10 М.
Half derivative of cos x
19:42
Dr Peyam
Рет қаралды 41 М.