Hello this exercice is not from french math olympiad but from a contest called "Concours général". It's a contest where the participants are in their last year of highschool. The difference between the olympiad and this contest is that the exercices are based on the french highschool maths curriculum
@cauchy20124 жыл бұрын
Est-ce que après le bac vous faites ce concours
@martiniquevodka55744 жыл бұрын
@@cauchy2012 Non c'est seulement pour les élèves en Terminale. En France il y a pas vraiment de concours postbac de type olympiade comme Putnam au USA
@cauchy20124 жыл бұрын
C'est ça aussi dans notre pays comme, c'est pour ce la quand j'ai vu votre commentaire je l'ai trouvé bizarre '' un concours de terminal''
@robertgerbicz4 жыл бұрын
Complicated part, easier when you need: (m+4)^(m+1)>=2*(m+3)^(m+1) for m>=5 then just divide the inequality by (m+3)^(m+1): (1+1/(m+3))^(m+1)>=2 rewrite this as: (1+1/(m+3))^(m+3) / (1+1/(m+3))^2 >=2 But here in the left side both term is a monotone increasing function [the first is a known fact, the 2nd is trivial]. Hence (1+1/(m+3))^(m+1)>=(1+1/8)^6 but that is bigger than 2. Done.
@beautifulworld6163 Жыл бұрын
How you know that function is monotone increasing
@CM63_France4 жыл бұрын
Hi, For fun: 2:41 : 4 is not equal to 3, 3:15 : a nice pythagorian triple, 6 "let's go ahead and", including 2 "let's go ahead and do that" 1 "so I'll just go ahead and, 1 "I'll may be go ahead and, 1 "may be we'll go ahead and" 2 "so let's may be go ahead and", 2 "great", 1 "what we want to do", 1 "so may be the first thing that we want to do", 1 "so the first thing I would do", 1 "and now what I can do".
@sunnycatt2014 жыл бұрын
1 "that's a good place to stop"
@pingpongfulldh23084 жыл бұрын
Hey Michael! Why don't you do a complete lecture series on Fourier Analysis & PDE please. Would be awesome. Thanks and keep it up.
@yamahantx70054 жыл бұрын
Fourier Analysis is a VAST field and is typically a graduate course onto itself.
@athysw.e.95624 жыл бұрын
Im, French, not at all in rockclimbing, so I haven't climbed up this cliff of course but I used to go in vacation around Gap and heard of this place for sure.
@CM63_France4 жыл бұрын
A good place to climb!
@goodplacetostop29734 жыл бұрын
19:20 C’est un bon endroit pour s’arrêter
@InstigationMex954 жыл бұрын
Merci
@InstigationMex954 жыл бұрын
Vôtre nom !
@shivansh6684 жыл бұрын
I guess , you have written in French
@CM63_France4 жыл бұрын
Very good, with the accents s'il vous plaît!
@keedt4 жыл бұрын
@@CM63_France *plaît ;-)
@kinenveu14 жыл бұрын
Ceuse, beautiful mountain, often good thermals to soar!
@Pradowpradow4 жыл бұрын
Well I'm french, I just learnt about the existence of Céüse
@hellosquirrel72714 жыл бұрын
Funny xD
@CM63_France4 жыл бұрын
so do I (both things)
@tonyhaddad13944 жыл бұрын
Mst michael penn i have a question : can we find the critical points of f(x) at f(x)'=0 and from this we can now if the fucntion is increasing or decreasing ???
@rikhalder57084 жыл бұрын
Please make a video on sum of binomial coefficients
@skrill5004 жыл бұрын
(1+1)^n = nC0+nC1+nC2+...+nCn = (2)^n
@tgx35294 жыл бұрын
For the proof (m+4)^(m+1)>=2*(m+3)^(m+1) we can proof that (m+4)^(m+1)/(m+3)^(m+1)>2.It's the same as (1+1/(m+3))^(m+1).For m=5 is the value of this function >2, the limit of this function is e.
@premanand40433 жыл бұрын
yes, a much more natural approach
@Charliethephysicist2 жыл бұрын
This reasoning is insufficient. How do you know your last function in m does not dip below 2 for some n>5?
@mrmathcambodia24513 жыл бұрын
I like Math, and I try to learn more about Math also. This video so good for me .
@ghislaindebusbecq88644 жыл бұрын
Anybody having holidays near Gap is a person of good taste.
@Terence31844 жыл бұрын
For n >=4 MOD n , LHS-RHS no matter n=even or odd , the residue will not be zero
@corentinchabanol92564 жыл бұрын
I knew you was a climber ! The arms put me on the idea ;) greetings from France ! If you come back to ceuse I will maybe see u ;)
@leif10754 жыл бұрын
Am I the only one who found the replacement of m from n at 9:00 confusing..why not just make thenineqaulity by replacing n with 5 on one side and with 5 on the other..much simpler and clearer...
@SlipperyTeeth4 жыл бұрын
15:17 How exactly would you go about showing that f'(6) = ln(9/8)-1/12 > 0? Did they allow calculators?
@SlipperyTeeth4 жыл бұрын
By playing around with it, I see that it follows from 3^19 > 2^30. These numbers are within a persons grasp, but certainly not a simple calculation that someone is likely to do unless they're already pretty sure that they're right.
@SlipperyTeeth4 жыл бұрын
Actually, it's not necessary, since you show that the derivative itself is strictly decreasing (the second derivative is negative) and has a limit at infinity of 0, then it must be positive. I actually glossed over the thing that does matter, which was showing that f(6) > ln(2), which amounts to showing (9/8)^6 > 2 or equivalently that 3^12 > 2^19. Orders of magnitude easier.
@E1Luch4 жыл бұрын
@@SlipperyTeeth i think you can prove that first hard inequality by raising second easier one to 19/12: 3^19 > 2^(19*19/12) = 2^(361/12) > 2^30
@SlipperyTeeth4 жыл бұрын
@@E1Luch Ooooh. It's neat that they're related. And by such a close margin too.
@E1Luch4 жыл бұрын
@@SlipperyTeeth its kinda lucky, 12 is the smallest power of 3 for which this trick worked
@turdferguson34002 жыл бұрын
It's so fun doing these my own way and seeing your way was completely different but we arrived at the same answer. It is the most fun part of math for me! For me I used a parity argument to show that n must be either 2 or 3 mod 4, and I used an upper bound condition to show that (n+3)^n
@elgourmetdotcom3 жыл бұрын
Why was the second derivative necessary?
@HagenvonEitzen4 жыл бұрын
Divide (m+4)^(m+1) > 2 (m+3)^(m+1) by (m+3)^(m+1) to get new target (1+1/(m+3))^(m+1)> 2. Naive application of Bernoulli's inequality would be too weak as it only gives (1+1/(m+3))^(m+1) > 1+(m+1)/(m+3)=2-2/(m+3). However, with the Bernoulli inequality generalized to non-integer exponents >=1, we have (1+1/(m+3))^((m+1)/6) > 1+(m+1)/(6m+18) = 7/6 - 1/(3m+9) >= 7/6 - 1/24 = 9/8 for all m >=5. Then verify (9/8)^6 > 2 to complete
@Charliethephysicist2 жыл бұрын
Nice.
@neilgerace3554 жыл бұрын
What was special about the case n = 4?
@pierrot315114 жыл бұрын
Enfin !
@JalebJay4 жыл бұрын
Merry Christmas!
@tgx35294 жыл бұрын
Easy proof that x*ln(x+3)-x*ln(x+2)>=ln2 x*ln(1+1/(x+2)) we can use that ln(1+y)>y/(1+y) for y>0 [it's from Lagrange], then is it true for x>=7. For x=5 and x=6 "handly"
@smoked84714 жыл бұрын
When mathematicians draw a wiggly line inside of a square, what does that mean??
@girianshiido4 жыл бұрын
What was to be shown.
@smoked84714 жыл бұрын
@@girianshiido I don't get it how does a square show what was to be shown??
@neilgerace3554 жыл бұрын
@@smoked8471 I think it's a tradition.
@ahzong35444 жыл бұрын
Draw a box at the corner of a proof indicates that everything else is a result of thinking outside the box. Just kidding, don't quote me on that. However I personally like to think about this.
@mooncowtube4 жыл бұрын
A square, sometimes filled and sometimes hollow, is often used as a "here ends the proof" marker. This is particularly useful in textbooks where the maths then continues. Notice that it's a bit more general than "QED", which only really makes sense if the final statement of the proof matches the thing to be proven, which in complicated proofs isn't always the case. However, Michael has made the square, filled in with a chalk wiggly line, a kind of trademark of his presentational style.
@leif10754 жыл бұрын
Why does he replace m with m plus 1 why not just work with m??
@ericaurissergues63064 жыл бұрын
Il y a beaucoup plus simple : faire passer (n+2)^n à droite et écrire ( n+3)^n-(n+2)^n sous la forme d'une somme de a^k x b^(n-k) La comparaison de la somme de gauche avec celle de droite donne immédiatement le résultat.
@yurenchu4 жыл бұрын
- " écrire ( n+3)^n-(n+2)^n sous la forme d'une somme de a^k x b^(n-k) " You mean: write (n+3)^n - (n+2)^n in the form of a sum of a^(k-1) * b^(n-k) , from k=1 to k=n (with a = n+3 and b = n+2 ). Note that in the sum, the exponent of a is (k-1), not k ; so the highest exponent in the sum will be (n-1), not n .
@Rahul-ky8mm4 жыл бұрын
Suggest me a best book consists various countries mathematical Olympiad questions
@emanuellandeholm56573 жыл бұрын
f(6) > log 2 is actually a surprisingly bold claim. log 2 is .69.... and f(6) is .70...
@jesusalej14 жыл бұрын
Great job!.
@Charliethephysicist2 жыл бұрын
Here is another proof for f(x):= x\ln((x+3)/(x+2)) is increasing and concave. f(x) = x \int_0^1 1/(x+2+t)dt = \int_0^1 x/(x+2+t)dt. The integrand in the last integral is increasing and concave in x for x>0, thus so is f(x).
@2kreskimatmy4 жыл бұрын
got lost in logarithmic inequality
@wesleydeng714 жыл бұрын
To prove (m+4)^(m+1)/(m+3)^(m+1)>2, let x=m+3 and you have LHS = (1+1/x)^(x-2) = (1+1/x)^x / (1+1/x)^2. Easy to see (1+1/x)^x is increasing and (1+1/x)^2 is decreasing. So LHS is increasing .
@Charliethephysicist2 жыл бұрын
Here is my way to see (1+1/x)^x is increasing. x ln(1+1/x) = \int_0^1 1/(1+t/x)dt. The integrand increases with x, thus so does the integral. Can you show me your way?
@kshitijsharma31704 жыл бұрын
Loved it
@tonystarklive90184 жыл бұрын
How about we know that xln(x+3)-xln(x+2) equal to ln((x+3)^x/(x+2)^x that mean x+3>2^1/x(x+2)>x+2 which is true?
@Charliethephysicist2 жыл бұрын
You should put parenthesis around 1/x. Otherwise it is really confusing. The real question is how you would prove your last inequality.
@theevilmathematician3 жыл бұрын
I used a different method that didn't involve any calculus. Notice if n=1, 4=3, so n≠1. If n=2 and n=3, the equation holds. Assume that if n≥4, (n+3)^n= k^n. If n is even, then 2=2p, p>0, which implies that (2p+3)^2p= 3^2p, which means 2p+3= 3, 2p=0. However, p>0, and thus if n≥4 and is even it cannot hold. If n is odd and n≥4, then n=2p+1, where p>0. Then, (2p+4)^2p+1= 3^2p+1, which implies that 2p+4=3, 2p=-1, but ∀p>0, it just cannot hold. Therefore, n={2, 3}, assuming n is a positive integer.
@adityamohan73664 жыл бұрын
At 18:50 Is the function always increasing or that it always remains a non-negative function? If it is increasing function the double derivative would be positive no?
@virajagr4 жыл бұрын
Function is increasing, but the speed by which it is increasing, is decreasing
@prizzoshamza96974 жыл бұрын
Can you make a video about the problem 6 in imo 1988
@jimskea2244 жыл бұрын
Shortcute (n.): a cute shortcut.
@djvalentedochp4 жыл бұрын
awesome
@algorfrile7394 жыл бұрын
Another way of solving it is using the fact that for all integers a and n, a^n = a mod n. Using this property, the equation reduces to n+3 = 3 + 4 + ... + n + n+1 + n+2 mod n which is equivalent to 3 = 0 + 1 + 2 + ... + n-1 = (n(n-1))/2 mod n If n is odd, then 2 divides n-1 and we obtain 3 = n*integer = 0 mod n which implies that n divides 3, ie n = 1 or n = 3 If n is even, say n = 2k, we have 3 = k(2k-1) = -k = k mod 2k which can be rewritten as k = 3 + 2kp for some integer p, yielding k(1-2p) = 3 which implies that k is either 1 or 3 This narrows down all the possible solutions to only 1,2,3 and 6, and a quick check shows that only 2 and 3 are solutions.
@TechToppers4 жыл бұрын
Mind giving a proof?
@ivanmitrovic19644 жыл бұрын
That just isn't correct, a^n=a (mod n) is not true for all a and n
@TechToppers4 жыл бұрын
@@ivanmitrovic1964 Yeah, that property he has used is not written correctly!
@tomasstride95904 жыл бұрын
@@ivanmitrovic1964 I think it is true for prime n. So may be the result could be changed to show there is a largest prime for which the result is true. The question might then be what does that say when n is non prime.
@ivanmitrovic19644 жыл бұрын
@@tomasstride9590 Yeah, for prime n it is true by Fermat's little theorem
@abdelilahsalimchatar46534 жыл бұрын
This is still too hard for me, I don’t even know what the backwards 3 means, like the n + 2 3 k^n k = 3
@smoked84714 жыл бұрын
When mathematicians draw a wiggly line inside of a square, what does that mean??(like in his channel's logo)
@virajagr4 жыл бұрын
That's sigma, used for summation. You substitute k from 3 to n+2 and add those numbers
@franciscomorilla95594 жыл бұрын
@@smoked8471 I guess you mean the end of proof symbol. When you end an exercise or a proof you can write something to make clear that the proof is done, everything after that is not part of it: usually most people draw a square to note this, although other symbols are some diagonal lines like ////, or writing QED which comes from latin and means end of proof.
@yurenchu4 жыл бұрын
SOLUTION: n=2 and n=3 CALCULATION: Let L(n) = (n+3)^n R(n) = ∑ k^n , from k=3 to k=(n+2) Solve L(n) = R(n) for integer n: n : 0 1 2 3 4 5 L(n) : 1 4 25 216 2401 32768 R(n) : 0 3 25 216 2258 28975 We see there are solutions for n=2 and n=3 . We can prove by induction that L(n) > R(n) for any n≥4 [*]. Furthermore, for n ≤ 0, RHS = 0, LHS ≠ 0, so there's no solution for negative values of n. So n=2 and n=3 are the only solutions. - - - - - - [*] PROOF by induction that L(n) > R(n) for any n≥4 : (without fiddling with any logarithms!) L(4) = 2401 > 2258 = R(4), so the statement is true for n=4 . Now show that if L(n) > R(n) (and n≥4), then also L(n+1) > R(n+1) . (By the way: obviously, L(n) > 0 and R(n) > 0 for any positive integer n.) L(n+1) = (n+4)^(n+1) = [(n+3) + 1]^(n+1) ... Since (n+1) ≥ 5, the binomial expansion will have at least six terms, and each term is positive. Therefore the total is greater than the sum of the first three terms of the binomial expansion ... > (n+3)^(n+1) + (n+1 choose 1)*(n+3)^(n) + (n+1 choose 2)*(n+3)^(n-1) = (n+3)*L(n) + (n+1)*L(n) + [(n+1)*n/2]*L(n)/(n+3) = (n+3)*L(n) + (n+1)*L(n) + [((n+1)*n)/(2*(n+3))]*L(n) ... for n > 3, we know [((n+1)*n)/(2*(n+3))] > 1 ... ... (because the graphs of f(x) = (x+1)x/2 and g(x) = x+3 show that for n>3, (n+1)n/2 > n+3 > 0 ) ... > (n+3)*L(n) + (n+1)*L(n) + [1]*L(n) R(n+1) = ∑ k^(n+1) , from k=3 to k=(n+1)+2 = { ∑ k^(n+1) , from k=3 to k=n+2 } + (n+3)^(n+1) < (n+2)*R(n) + (n+3)^(n+1) = (n+2)*R(n) + (n+3)*L(n) = (n+2)*[R(n)-L(n)] + (n+2)*L(n) + (n+3)*L(n) ... induction hypothesis: R(n) < L(n) ==> [R(n) - L(n)] < 0 ... < (n+2)*[0] + (n+2)*L(n) + (n+3)*L(n) = L(n) + (n+1)*L(n) + (n+3)*L(n) < L(n+1) Q.E.D.
@cauchy20124 жыл бұрын
3
@gianpietropalacios87344 жыл бұрын
:v 🤗👋
@soumitrapharikal55034 жыл бұрын
First
@TwilightBrawl594 жыл бұрын
Apparently not, Good Place To Stop posted 18 mins ago and you posted 17 mins ago.
@beautifulworld6163 Жыл бұрын
Dont use calculus, it is shit
@3mon3y944 жыл бұрын
Hey Michael! Why don't you do a complete lecture series on Fourier Analysis & PDE please. Would be awesome. Thanks and keep it up.