FRM: Lognormal value at risk (VaR)

  Рет қаралды 38,127

Bionic Turtle

Bionic Turtle

Күн бұрын

Пікірлер: 8
@bionicturtle
@bionicturtle 13 жыл бұрын
@akathetruthteller yes E[(e^X)] = e^[mu + sigma^2/2] but S(t) = S(0)e^[(mu - sigma^2/2)T+sigma*sqrt(T)*z] reduces to E[St] = S(0)*e^(mu*T) for the mean which is greater than the median. Not so much as shift as, to paraphrase Culp, how you define the drift
@axe863
@axe863 11 жыл бұрын
A simple generalization would be to replace geometric brownian motion with geometric fractional brownian motion w/ H in (0,1) ==> GBM is just a GFBM w/ H=1/2. From what I can recall, the only difference in the log- (fractional) normal distribution is sigma==> sigma*(T-t)^H-0.5.
@bionicturtle
@bionicturtle 13 жыл бұрын
@adang23 yes, thank you, of course I agree that is more correct! (i don't think it impacts anything subsequently ... I confuse myself sometimes because "expected return" mu can be defined either as mu-variance/2 or just mu but clearly your are right about the LN() distribution).
@DrHerbertBarber
@DrHerbertBarber 3 жыл бұрын
Nice example. May be nice if you showed everyone how to actually calculate drift (return), as well, rather than just assume, to use when appropriate.
@vanvivoi
@vanvivoi 9 жыл бұрын
Hey, thank you so much for the great video. Can you give me a hint in which bibliography sources I can get these formulas? Thanks a bunch :D
@adang23
@adang23 13 жыл бұрын
I think it is more accurate to say ln(S_T/S_0) follows a N(mu-0.5sigma^2,sigma^2) distribution, rather than N(mu, sigma^2) distribution...
@akathetruthteller
@akathetruthteller 13 жыл бұрын
man, you should double check. i think for lognormal RV. E(X) =exp( mu + sigma^2/2) and median = exp(mu). you are implying a shift of calculation somehow.
@rexz9338
@rexz9338 5 жыл бұрын
I like the video but I might have to point out something here. The result and definition of Mean are not accurate here. ln(S_T/S_0)~N(u, sigma^2), then when you calculate expectation(mean) of S_T, it should be integral of (g(x)f(x)dx), which equals to S_0*e^(u-(sigma^2)/2) i.e. the result of the median in the video. Then you use the expectation to calculate the confidence interval and VaR with the approximation to normal distribution. The definition of VaR and confidence interval both deal with the expectation(mean) instead of the median.
Three approaches to value at risk (VaR) and volatility (FRM T4-1)
18:02
Expected Shortfall & Conditional Value at Risk (CVaR) Explained
11:52
Ryan O'Connell, CFA, FRM
Рет қаралды 7 М.
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 23 МЛН
兔子姐姐最终逃走了吗?#小丑#兔子警官#家庭
00:58
小蚂蚁和小宇宙
Рет қаралды 16 МЛН
黑的奸计得逞 #古风
00:24
Black and white double fury
Рет қаралды 30 МЛН
Calculating VAR and CVAR in Excel in Under 9 Minutes
9:02
QuantCourse
Рет қаралды 256 М.
Monte Carlo Method: Value at Risk (VaR) In Excel
10:13
Ryan O'Connell, CFA, FRM
Рет қаралды 52 М.
Value at Risk (VaR) Backtest (FRM T5-04)
22:29
Bionic Turtle
Рет қаралды 18 М.
The Lognormal Model of Stock Prices
9:36
Mike, the Mathematician
Рет қаралды 1,5 М.
Why are Stock Prices Lognormal?
12:28
Options A to Z - Facebook Trading Group
Рет қаралды 7 М.
Value (VaR) Mapping a fixed-income portfolio (FRM T5-05)
21:26
Bionic Turtle
Рет қаралды 11 М.
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 23 МЛН