Functional analysis is really fun! Thank you for making these videos!
@brightsideofmaths4 жыл бұрын
Thank you for watching :)
@yuanxiwu94512 жыл бұрын
Very nice course. You really make it easier for people majoring in engineering to understand functional analysis! Have supported on steady~
@brightsideofmaths2 жыл бұрын
Thank you very much :)
@muhammedali46124 жыл бұрын
Could you please explain why at 1:46 we are able to take the supremum of f to be 1 without loss of generality? Aren't we looking for the supremum over all f in X?
@brightsideofmaths4 жыл бұрын
Yeah, you just pull 1/norm(f) into the absolut value and then, by linearity, into the function T_g.
@muhammedali46124 жыл бұрын
@@brightsideofmaths ahh I see thanks!
@RangQuid Жыл бұрын
All your explanation and demonstration are extremely rigorous, I love it 😊😊!
@brightsideofmaths Жыл бұрын
Thanks so much! 😊 Also thanks for your support!
@muhammedali46124 жыл бұрын
These videos are amazing.
@brightsideofmaths4 жыл бұрын
Thank you :)
@qiaohuizhou69603 жыл бұрын
Hi, I don't quite get why at 1:55 we can simply choose f such that the ||f|| =1 without changing the equality of the sup? Could you please explain that a bit?
@brightsideofmaths3 жыл бұрын
This is a scaling argument. If the norm of f is not 1, you can consider the vector f/||f|| instead. Just try to write that down and you will see that it works :)
@qiaohuizhou69603 жыл бұрын
@@brightsideofmaths thank you so much for your explanation! I think I get what you meant here. Just to make sure I didn't get the idea wrong, you mean I can simply choose a vector f=f/||f||, so by taking the norm the denominator will go to 1 anyway.
@alirezaghadami31884 жыл бұрын
Wow ,these videos are amazing and very helpful , keep it up 👍
@brightsideofmaths4 жыл бұрын
Thanks a lot :)
@edgarlangwald2932 Жыл бұрын
But h is not continous, so Th shouldn’t be defined, right? Wouldn‘t you habe to argue with a sequence of continous functions that converges to h?
@brightsideofmaths Жыл бұрын
Why shouldn't h be not continuous?
@張毓倫-l2c Жыл бұрын
Teacher, why is the absolute value of f(x) less than the norm of f at 2:39 in the video?
@brightsideofmaths Жыл бұрын
That is the definition of the supremum norm :)
@qingninghuo4047 Жыл бұрын
At 0:32, Can u please clarify how the supreme norm of a continuous function is defined? Is this defined in one of the earlier video of this series? Thank you.
@brightsideofmaths Жыл бұрын
It's defined in my real analysis course :)
@qingninghuo4047 Жыл бұрын
@@brightsideofmaths Many thanks for quick reply. Afraid that it is not easy to locate a definition in the real analysis series. I would guess, it is probably defined as \sup(|f(D)|) where D is the demain of f?
@xwyl2 жыл бұрын
This time construction of h(t) is a bit easier to understand: to make h(t) as big as possible to maximize the integral.
@abhayrao9951 Жыл бұрын
Wonderful and informative video. I had a query. Can you kindly explain how, while defining the operator norm of ||Tg||=norm of ouput by norm of input (1:27 onwards) is shown as absolute of output by norm of input. i.e shdnt it be ||Tg|| = { ||Tg(f)|| / ||f|| } but the video shows.... ||Tg|| = { |Tg(f)| / ||f|| }. Can you kindly clarify and correct me where I am going wrong? Thank you soo much
@brightsideofmaths Жыл бұрын
Thank you so much :) The absolut value is the norm of the corresponding space here.
@juliocesar15513 жыл бұрын
Very helpful!! Thanks for this video!
@ahmedamr526511 ай бұрын
Great video! Isn't Tg(f) an inner product over X?
@brightsideofmaths11 ай бұрын
It depends how you precisely define it. For complex vector spaces, it's not :D
@rohankapoor82897 ай бұрын
why did you include the condition of g having no zeroes?
@brightsideofmaths7 ай бұрын
See calculation at 3:40
@rohankapoor82896 ай бұрын
@@brightsideofmaths so am i correct in assuming that it is not necessary to show the inequality, and only useful to show that equality is possible?
@brightsideofmaths6 ай бұрын
@@rohankapoor8289 Yes, we show equality :)
@stellamn2 жыл бұрын
i don't see how you can assume there is no loss in generality when choosing the function h to be the complex conjugate of g. how do you recreate any other function from h and your lower bound remains true?
@brightsideofmaths2 жыл бұрын
We don't need the generality in the second step. We just want to find one function that satisfies the other inequality. Together with the general first step, we have shown the equality then :)