Functional Analysis 26 | Open Mapping Theorem

  Рет қаралды 17,670

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 13
@mattetor6726
@mattetor6726 4 жыл бұрын
I remember this one from analysis. Such a nice and reasonable result, but such a difficult proof!
@亚洲亚洲
@亚洲亚洲 4 жыл бұрын
Thank you sir.
@mathe_ma
@mathe_ma 4 жыл бұрын
Eagerly waiting for this ... Sir you makes things very easy
@johnstroughair2816
@johnstroughair2816 4 жыл бұрын
Are you going to make videos proving all the theorems you have introduced in the last few lectures?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Yes, of course. But not right away. There are still a lot of other theorems we should discuss first.
@hafsasaima4163
@hafsasaima4163 2 жыл бұрын
When r u posting the proofs
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Only if some people are interested in them.
@wesleyrm
@wesleyrm Жыл бұрын
Well, I didn't actually catch/note all of them, but the four main ones for now are the proofs for Hahn-Banach (Geometric & Analytic), Arzelà-Ascoli, Banach-Schauder (Open mapping theorem) and Banach-Steinhaus (Uniform boundedness principle). The Baire Category Theorem, BCT (I have no idea what this is lol), can be used to prove the last two, but I read somewhere they can even be proven "more elementarily" without it... Their proofs can all be found on Wikipedia. With the exception of Hahn-Banach, all their proofs can be found on ProofWiki as well, which I prefer to Wikipedia. For Arzela-Ascoli, some sources cite different types of equicontinuity on the definition, but apparently they can be proven to be equivalent in compact metrics spaces... My course on university uses the two versions of the Hahn-Banach theorem. Also they work a lot with Convex sets, and topology. EDIT: In my course they talk about Weak topologies and all that stuff I have no idea about lol. So we see Banach-Alaoglu theorem for *-weak topology, which uses Tikhonov's theorem. Stuff like this is still way outside my reach... proofwiki.org/wiki/Projection_on_Real_Euclidean_Plane_is_Open_Mapping Even a fact on projections, which may seem simple, not even a theorem, but a counterexample, requires knowledge on Topology...
@InfiniteStudy
@InfiniteStudy 10 ай бұрын
+1
@irshadsirslectures4446
@irshadsirslectures4446 Жыл бұрын
Is this both was result OMT
@sweety3426
@sweety3426 3 жыл бұрын
Why x----x² not open?? How you told that
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Why do you think it's open?
@SG_0312
@SG_0312 2 жыл бұрын
@sweety choose (-1, 1) then f (-1, 1) =[0, 1) which is not open.
Functional Analysis 15 | Riesz Representation Theorem
10:10
The Bright Side of Mathematics
Рет қаралды 43 М.
Functional Analysis 3 | Open and Closed Sets
11:08
The Bright Side of Mathematics
Рет қаралды 96 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
Functional Equation
14:15
Prime Newtons
Рет қаралды 401 М.
Functional Analysis 16 | Compact Sets
10:56
The Bright Side of Mathematics
Рет қаралды 35 М.
Functional Analysis 25 | Hahn-Banach Theorem [dark version]
11:56
The Bright Side of Mathematics
Рет қаралды 2,1 М.
An Exact Formula for the Primes: Willans' Formula
14:47
Eric Rowland
Рет қаралды 1,4 МЛН
The rarest move in chess
17:01
Paralogical
Рет қаралды 2,6 МЛН
Fermat's Last Theorem - Numberphile
9:31
Numberphile
Рет қаралды 2,3 МЛН
Functional Analysis 13 | Bounded Operators
10:46
The Bright Side of Mathematics
Рет қаралды 35 М.
Functional Analysis 12 | Continuity
12:11
The Bright Side of Mathematics
Рет қаралды 26 М.