Functional Analysis 6 | Norms and Banach Spaces

  Рет қаралды 84,625

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 41
@wdacademia2329
@wdacademia2329 2 жыл бұрын
A quick remark: it may seem rather ad-hoc to restrict ourselves to R and C as the only two options for the field. Or in the definition of a metric space, having the metric be a function into R (why not some other ordered topological field). It turns out though, that when we consider all desired properties for our analysis we get nice categoricity results. For example, up to isomorphism, R is the unique complete ordered field as well as the unique complete Archimedean field (order completeness in the former and metric completeness in the latter). Another result is that R and C are the only connected, locally compact, topological fields. So these restrictions are not so ad-hoc after all.
@samtux762
@samtux762 Жыл бұрын
Why should we care about this space? Euclidian or hilbert space seem to bo the same job.
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
Norms and Banach spaces? More like "Now these videos grace us" with tremendous amounts of knowledge and understanding. Thank you so much for making and uploading all of them!
@rin-or3no
@rin-or3no 4 жыл бұрын
Thanks. I know its hard to make videos so fast but I enjoy this. Waiting for the next one. (One video each day will be great)
@jordanmatin8498
@jordanmatin8498 3 жыл бұрын
Hello, You are doing a very good job! Thank you for strengthening my intuiton while remaining rigorous :)
@parianhatami
@parianhatami 11 ай бұрын
ALL OF YOUR VIDEOS ARE AWESOME!
@zoedesvl4131
@zoedesvl4131 4 жыл бұрын
I'd like to add some generalization here, many of which will be learned in the future I think. There is a hidden property of this metric d induced by norm: d is translate invariant. To be precise, we naturally have d(x+z,y+z)=||(x+z)-(y+z)||=||x-y||=d(x,y) for all z in X. But is norm always a thing? By Axiom of Choice, any vector space is normable (i.e., we are able to define a norm whatsoever), but some norm results in abnormal structure, in which case we don't want to admit the existence of that norm. (If you are interested, learn this theorem: A topological vector space X is normable if and only if its origin has a convex bounded neighborhood.) To solve this problem, mathematicians introduced a more generalized topological vector space: F-space. A topological vector space X is called a F-space if it has a complete translate invariant metric (i.e. d(x,y)=d(x+z,y+z) for all z in X). So the blue box at the end will be updated in the future: norm be 'upgraded' to translate invariant metric. By the way this channel is great! I always prefer recommend this channel to people learning math over many others. It's important to keep the seriousness of mathematics and this channel deals with it nicely.
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Thank you for your generalisations and the recommendations :) I will cover Fréchet-spaces maybe in the end of this series. I really like them but I have the feeling that it is easier first to do a lot of functional analysis with Banach spaces before going into this direction.
@batmanrobin6711
@batmanrobin6711 4 күн бұрын
this is so well explained and easy to understand that I am afraid I am kidding myself and in reality understand nothing about this!
@raycopper9229
@raycopper9229 4 жыл бұрын
Great intro video for Functional Analysis, easy to digest.
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Glad you like it. We will do harder stuff later :)
@raycopper9229
@raycopper9229 4 жыл бұрын
@@brightsideofmaths Looking forward to it! XD
@kristiantorres1080
@kristiantorres1080 3 жыл бұрын
Amazing content, very easy to grasp. Thank you! Subscribed!
@ishaangoud3180
@ishaangoud3180 2 жыл бұрын
Does a Banach Spaced form an Abelian Group(+) under addition . Like a vector space?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yes!
@ishaangoud3180
@ishaangoud3180 2 жыл бұрын
@@brightsideofmaths Thank you!
@L23K
@L23K 2 жыл бұрын
Danke Ihnen für die tolle Erklärung!
@ROni_ROmio
@ROni_ROmio 4 жыл бұрын
thanks for ur efforts,,,, and ur term,,, very useful
@Independent_Man3
@Independent_Man3 4 жыл бұрын
Difference between Hilbert space and Banach space ?? What if the norm is induced by an inner product and X is complete with respect to this norm? Is the following true? Banach space = complete normed vector space Hilbert space = complete inner product space Further, what if the vector space is infinite dimensional?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Yes, both things are true. The dimension does not play a role in this definition, a priori.
@davidaugustyn9234
@davidaugustyn9234 Жыл бұрын
What do you need to understand this course
@vipilvijay7116
@vipilvijay7116 Жыл бұрын
Set Theory Some notions from Analysis Linear Algebra Basic notions from Abstract Algebra & Topology are very helpful and most importantly Mathematical Maturity.
@pebotin
@pebotin 4 жыл бұрын
Thanks for uploading..very much appreciated..😊😊
@rakshithasp1279
@rakshithasp1279 4 жыл бұрын
Sir please explain metric completion theorem and its uniqueness please do explain sir I'll be waiting sir
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Coming soon :)
@rakshithasp1279
@rakshithasp1279 4 жыл бұрын
@@brightsideofmaths I will be waiting sir thank you for replying sir
@nachomacho7027
@nachomacho7027 3 жыл бұрын
Merci beaucoup compadre 👌 sehr gute videos brudi
@samtux762
@samtux762 Жыл бұрын
Is it also equipped with open set topology?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
What do you mean exactly?
@efamily2854
@efamily2854 3 ай бұрын
Hello, what software do you use to make your videos?
@brightsideofmaths
@brightsideofmaths 2 ай бұрын
See my website in the description. There is an FAQ :)
@ski34able
@ski34able 3 жыл бұрын
First video thazcan explain this to me
@umarhabiblmsonly2206
@umarhabiblmsonly2206 3 жыл бұрын
Sir please make the videos of linear space
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Linear algebra course is in the making :)
@umarhabiblmsonly2206
@umarhabiblmsonly2206 3 жыл бұрын
@@brightsideofmaths where???
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
@@umarhabiblmsonly2206 Here on my desk.
@zazinjozaza6193
@zazinjozaza6193 4 жыл бұрын
Nice!
@adilaid4443
@adilaid4443 4 жыл бұрын
Great
@MrBorderlands123
@MrBorderlands123 4 жыл бұрын
아주 좋은 비디오. 한국에서 감사요!
@leewilliam3417
@leewilliam3417 Жыл бұрын
Mmmm😊
@MrArmas555
@MrArmas555 4 жыл бұрын
++
Functional Analysis 7 | Examples of Banach Spaces
13:04
The Bright Side of Mathematics
Рет қаралды 57 М.
Functional Analysis 2 | Examples for Metrics - Euclidean or Discrete Metric?
8:15
The Bright Side of Mathematics
Рет қаралды 78 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Banach Spaces - Lec02 - Frederic Schuller
1:49:17
Frederic Schuller
Рет қаралды 87 М.
The Lp Norm for Vectors and Functions
9:34
Dr. Will Wood
Рет қаралды 81 М.
Functional Analysis 7 | Examples of Banach Spaces [dark version]
12:51
The Bright Side of Mathematics
Рет қаралды 3,6 М.
Functional Analysis 1 | Metric Space - How to Measure Distances?
5:59
The Bright Side of Mathematics
Рет қаралды 208 М.
Functional Analysis 3 | Open and Closed Sets
11:07
The Bright Side of Mathematics
Рет қаралды 94 М.
Inner Products in Hilbert Space
8:41
Steve Brunton
Рет қаралды 126 М.
Normed, Banach and Hilbert Spaces: Everything You Need to Know! L^p Spaces and More 😉
8:17
Professor Wolverine: Math, Physics and Paradoxes
Рет қаралды 3,4 М.
Linear Algebra 9 | Inner Product and Norm
12:23
The Bright Side of Mathematics
Рет қаралды 39 М.
Lecture 1: Basic Banach Space Theory
1:15:19
MIT OpenCourseWare
Рет қаралды 211 М.