Gaussian Integral with a (Reciprocal) Twist: Berkeley Integration Bee (1)

  Рет қаралды 16,967

LetsSolveMathProblems

LetsSolveMathProblems

Күн бұрын

Пікірлер: 64
@idavid8128
@idavid8128 4 жыл бұрын
You have to be at anime protagonist level of thinking full sentences in a second to be able to do this in 4 minutes
@afreensadia2424
@afreensadia2424 4 жыл бұрын
Can you solve the problem?
@adityadwivedi4412
@adityadwivedi4412 3 жыл бұрын
@@afreensadia2424 I can
@afreensadia2424
@afreensadia2424 3 жыл бұрын
@@adityadwivedi4412 then give the solution
@INSP_NITIN
@INSP_NITIN 4 жыл бұрын
Nice video , calculus is the only part of maths which is still very useful for me , keep the good work up
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
ay , didn't expect you here
@dailyanimedoses6999
@dailyanimedoses6999 3 жыл бұрын
_/\_ parnam sir ji
@kaskilelr3
@kaskilelr3 4 жыл бұрын
I am the type of guy who virtually never hits the like button on youtube, but I found your channel and I've been liking every video I've seen so far. You are awesome, keep up the great videos.
@typha
@typha 4 жыл бұрын
The problem solving starts at around 0:40 and ends around 10:10. So it takes 9 minutes and 30 seconds. If you watch at 2x speed, that's 4 minutes 45 seconds... so if a person watches this video at 2x speed, and uses the right arrow key to skip ahead through predictable parts 9 times during the solution (which, granted, is a bit excessive), then they could have watched the solution in 4 minutes.
@evanev7
@evanev7 4 жыл бұрын
Stop watching me o.0
@skrill500
@skrill500 4 жыл бұрын
Lol squaring terms like (x^n+1/x^n) works out super nicely because you always have a constant term
@slavinojunepri7648
@slavinojunepri7648 Жыл бұрын
Excellent and inspiring solution to a tough integral at first glance.
@plaustrarius
@plaustrarius 4 жыл бұрын
Excellent! didn't go back for the second substitution and got stuck, really liked this thank you!
@giovanicampos4120
@giovanicampos4120 3 жыл бұрын
Boy I miss you please come back
@ninadmunshi2879
@ninadmunshi2879 4 жыл бұрын
Hello! I was pleasantly surprised to see you uploaded this integral today. I'm actually quite impressed by your solution, I hadn't thought of using symmetry like this. The solution I had in mind does in fact use the same substitution you came up with! But the proof for it is a little different. We can assert that the integral of f(x) = integral of f(x-1/x) if the bounds are from -infinity to infinity. This is the Glasser master theorem en.wikipedia.org/wiki/Glasser%27s_master_theorem
@sergeiivanov5739
@sergeiivanov5739 4 жыл бұрын
When any equality that involves two improper integral over R contains PV, does it imply that both of them might diverge, but when converge, then do so to an equal number, which is the Cauchy principal value?
@ninadmunshi2879
@ninadmunshi2879 4 жыл бұрын
@@sergeiivanov5739 Yes that's right. Take the simple example of f(x) = x which is an example of your statement
@nitayderei
@nitayderei 4 жыл бұрын
There is a nice sentence which simplifies that: integral from -infty to infty of f(x-1/x) equals to the original.
@69erthx1138
@69erthx1138 4 жыл бұрын
Just when I was thinking e^A+e^B=e^Ae^B, then splitting the integrations into a sum over {-infinity to 0}+{0 to infinity}....a Gaussian frown turned upside down.
@Bemath_kh
@Bemath_kh 4 жыл бұрын
69erthx1138 Hasha
@isaacaguilar5642
@isaacaguilar5642 4 жыл бұрын
This is a random fact but if u know it then it can be solved easily. Integral from 0 to infinity of f(x)dx give f(x) is even is the same as integral from 0 to infinity of f(x-1/x)dx. So if we write our integral as 2* e^-2 *int (0,inf) e^-(x-1/x)^2dx then its can be seen that its the same as 2*e^-2*int (0,inf) e^-x^2 which is 2e^-2 * sqrt(pi)/2 which is sqrt(pi)/e^2. The proof is basically what u showed but given a random f(x) thats even
@nuranichandra2177
@nuranichandra2177 4 жыл бұрын
Scary integral with an elegant solution. Great video
@Bemath_kh
@Bemath_kh 4 жыл бұрын
Nurani Chandra soo scary
@CipriValdezate
@CipriValdezate Жыл бұрын
So good... I had no words.
@Celastrous
@Celastrous 4 жыл бұрын
Damn, really satisfying answer. Great video, very concise and easy to follow.
@terryyoon1856
@terryyoon1856 4 жыл бұрын
My best friend in Berkeley actuslly sent me this!! Its pretty hard but ITS SO SATISFYING!
@rajatkhandelwal7276
@rajatkhandelwal7276 4 жыл бұрын
Bro please start weekly maths challenges also
@meiwinspoi5080
@meiwinspoi5080 4 жыл бұрын
Superb. The best. You rock.
@biswadeepghosh5568
@biswadeepghosh5568 2 жыл бұрын
Great solution 👍
@tanusrimalakar9357
@tanusrimalakar9357 3 жыл бұрын
Fantastic
@stewartzayat7526
@stewartzayat7526 4 жыл бұрын
THAT'S MY MAN!
@pbj4184
@pbj4184 3 жыл бұрын
The reason the u-sub doesn't work is because of the singularity at x=0 which prevents the relation of u and x from being bijective
@gamedepths4792
@gamedepths4792 4 жыл бұрын
Please continue the weekly maths challenge please!
@mrl9418
@mrl9418 4 жыл бұрын
Bravo
@lucas29476
@lucas29476 4 жыл бұрын
I wonder if this can be solved using contours?
@marekkryspin8712
@marekkryspin8712 4 жыл бұрын
I did it similarly (but more generally): There is equality ∫f(x)=∫f(x-¹/ₓ), when the integrals are at the limit -int to +inf. So if f(x)=e^-x², the left is √π and on the right is e² · (our integral) so our integral= √π/e².
@gogolplex8576
@gogolplex8576 4 жыл бұрын
Cool😍 Do you know the name of that rule?
@marekkryspin8712
@marekkryspin8712 4 жыл бұрын
@@gogolplex8576 I did not know the name, but after a while of research I found: Glasser's master theorem (special case).
@gogolplex8576
@gogolplex8576 4 жыл бұрын
@@marekkryspin8712 Ok, thank you very much! Apparently it is the Cauchy-Schlömilch relation, or at least it is related to it. Its always helpful to learn tricks like this, so thank you again for mentioning it
@narekkousherian5015
@narekkousherian5015 4 жыл бұрын
I did mine similarly too, solved with Gaussian error function
@Bemath_kh
@Bemath_kh 4 жыл бұрын
All about tough integral🤯🤯
@XanderGouws
@XanderGouws 4 жыл бұрын
This is crazy. I like it.
@yacinbadr5181
@yacinbadr5181 4 жыл бұрын
ممكن الشرح باللغة العربية ؟
@rishj007
@rishj007 4 жыл бұрын
the problem just ends at step 3 when u come to know its an even function(exp. part).
@rafael7696
@rafael7696 4 жыл бұрын
Great
@prashantmishra9073
@prashantmishra9073 4 жыл бұрын
It's easy with substitution logx=t
@Smokie_bear9896
@Smokie_bear9896 4 жыл бұрын
pog
@dileep_j203
@dileep_j203 4 жыл бұрын
:) ❤❤👍👍
@איתןגרינזייד
@איתןגרינזייד 4 жыл бұрын
I tried before watching the video and I almost got it and I am so mad
@afreensadia2424
@afreensadia2424 4 жыл бұрын
Sir please solve the problem... If we can write a number as a^b then we call that number LAL number where both a, b is greater than 1. Again, the sum of two LAL numbers is a LAL number. After which value, every number is a LAL number?
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
could you be more precise
@afreensadia2424
@afreensadia2424 4 жыл бұрын
@@hamiltonianpathondodecahed5236 this is the actual question
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
could you clarify the part which says ," _Again, the sum of two LAL numbers is a LAL number. After which value, very numberLAL number_ "
@afreensadia2424
@afreensadia2424 4 жыл бұрын
@@hamiltonianpathondodecahed5236 like 9 is a LAL number, cause 3^2 = 9, again 16 is a LAL number cause 4^2 = 16. Now 9+16=25=5^2, 25 also a LAL number.
@vishwanraja666
@vishwanraja666 3 жыл бұрын
finally something I can't do
@shaswatadutta4451
@shaswatadutta4451 4 жыл бұрын
Could be solved within 3 minutes too.
@wfe2891
@wfe2891 4 жыл бұрын
Go Golden Bears!! #Berkeley2024
@zerospeed6412
@zerospeed6412 4 жыл бұрын
I literally managed to guess the answer in seconds.
@lilyyy411
@lilyyy411 4 жыл бұрын
:O
@afreensadia2424
@afreensadia2424 4 жыл бұрын
Sir, please solve the problem... Suppose, Sheldon is gambling. There are numbers from 1 to 2n. He bid 666 taka for every even number and 3366 taka for every odd number. Each time a wheel is spinned with all those numbers. And a number is chosen randomly. Sheldon gets the money he bid on that number. After the first spin, how much should he earn?
Decrease That Exponent: Berkeley Integration Bee (2)
4:54
LetsSolveMathProblems
Рет қаралды 19 М.
Gaussian Integral and Polar Coordinates: MIT Integration Bee (18)
22:17
LetsSolveMathProblems
Рет қаралды 125 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 26 МЛН
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 36 МЛН
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 757 М.
Solving 'impossible' integrals in seconds
6:35
MindYourDecisions
Рет қаралды 1,3 МЛН
What is this Product?!!: MIT Integration Bee (15)
17:24
LetsSolveMathProblems
Рет қаралды 254 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 563 М.
Supreme Integral with Feynman's Trick
17:53
blackpenredpen
Рет қаралды 213 М.
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 591 М.
LAVROV's interview with Tucker CARLSON 😁 [Parody]
8:34
Юрий ВЕЛИКИЙ
Рет қаралды 354 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 26 МЛН