NOTE: This StatQuest is sponsored by JADBIO. Just Add Data, and their automatic machine learning algorithms will do all of the work for you. For more details, see: bit.ly/3bxtheb BAM! Corrections: 3:42 I said 10 grams of popcorn, but I should have said 20 grams of popcorn given that they love Troll 2. Support StatQuest by buying my books The StatQuest Illustrated Guide to Machine Learning, The StatQuest Illustrated Guide to Neural Networks and AI, or a Study Guide or Merch!!! statquest.org/statquest-store/
@phildegreat3 жыл бұрын
website not working?
@statquest3 жыл бұрын
@@phildegreat Thanks! The site is back up.
@anirbanpatra30172 жыл бұрын
8:15 There's a minor error in the slide 'help use decide' . You really are a great teacher.Wish I could Meet you in person some day.
@rohan26093 жыл бұрын
4 weeks back I had no idea what is machine learning, but your videos have really made a difference in my life, they are all so clearly explained and fun to watch, I just got a job and I mentioned some of the learnings I had from your channel, I am grateful for your contribution in my life.
@statquest3 жыл бұрын
Happy to help!
@lowerbound48033 жыл бұрын
Congratulations!!
@rimurusama96952 жыл бұрын
That is a HUGE help my friend, congrats.. !!
@mildlyinteresting19254 жыл бұрын
Following your channel for over 6 months now sir, your explanations are truly amazing..
@statquest4 жыл бұрын
Thank you very much! :)
@tassoskat86234 жыл бұрын
This is by far my favorite educational KZbin channel. Everything is explained in a simple, practical and fun way. The videos are full of positive vibes just from the beginning with the silly song entry. I love the catch phrases. Statquest is addictive!
@statquest4 жыл бұрын
Thank you very much! :)
@raa__va48142 жыл бұрын
Im at the point where my syllabus does not require me to look into all of this but im just having too much fun learning with you. Im glad i took this course up to find your videos
@statquest2 жыл бұрын
Hooray! :)
@amirrezamousavi51393 жыл бұрын
My little knowledge about machine learning could not be derived without your tutorials. Thank you very much
@statquest3 жыл бұрын
Glad I could help!
@TheVijaySaravana3 жыл бұрын
I have watched over 2-3 hours of lecture about Gaussian Naive Bayes. Now is when I feel my understanding is complete.
@statquest3 жыл бұрын
Hooray!
@minweideng45954 жыл бұрын
Thank you Josh. You deserve all the praises. I have been struggling with a lot of the concepts on traditional classic text books as they tend to "jump" quite a lot. You channel brings all of them to life vividly. This is my go to reference source now.
@statquest4 жыл бұрын
Awesome! I'm glad my videos are helpful.
@sakhawath194 жыл бұрын
If I remember all the best educator's name on KZbin, you always come at the beginning! You are a flawless genius!
@statquest4 жыл бұрын
Thank you! 😃
@leowei2575 Жыл бұрын
WOOOOOOW. I watched every video of yours, recommended in the description of this video, and now this video. Everything makes much more sense now. It helped me a lot to undersand the Gaussian Naive Bayes algorithm implemented and available from scikit-learn for applications in machine learning. Just awesome. Thank you!!!
@statquest Жыл бұрын
Wow, thanks!
@mohit10singh4 жыл бұрын
I am a beginner in Machine Learning field, and your channel helped me alot, almost went through all the videos, very nice way of explaining. Really appreciate you for making these videos and helping everyone. You just saved me ... Thank you very much...
@statquest4 жыл бұрын
Thank you very much! :)
@argonaise_jay2 жыл бұрын
One of the best channel for learners that the world can offer..
@statquest2 жыл бұрын
Thank you!
@pinesasyg98942 жыл бұрын
amazing kowledge with incredible communication skills..world will change if every student has such great teacher
@statquest2 жыл бұрын
Thank you!
@zitravelszikazii8946 ай бұрын
Thank you for the prompt response. I’m fairly new to Stats. But this video prompted me to do a lot more research and I’m finally confident on how you got to the result. Thank you for your videos. They are so helpful
@statquest6 ай бұрын
Glad it was helpful!
@WorthyVII2 жыл бұрын
Literally the best video ever on this.
@statquest2 жыл бұрын
Thank you!
@samuelbmartins3 жыл бұрын
Hi, Josh. Thank you so much for all the exceptional content from your channel. Your work is amazing. I'm a professor in Brazil of Computer Science and ML and your videos have been supporting me a lot. You're an inspiration for me. Best.
@statquest3 жыл бұрын
Muito obrigado!
@yuxinzhang42284 жыл бұрын
It's amazing! Thank you so much ! Our professor let us self-teach the Gaussian naive bayes and I absolutely don't understand her slides with many many math equations. Thanks again for your vivid videos !!
@statquest4 жыл бұрын
Glad it was helpful!
@sairamsubramaniam83163 жыл бұрын
Sir, this playlist is a one-stop solution for quick interview preparations. Thanks a lot sir.
@statquest3 жыл бұрын
Good luck with your interviews! :)
@Godofwarares1 Жыл бұрын
This is crazy I went to school for Applied Mathematics and it never crossed my mind that what I learned was machine learning as chatgpt came into the lime light I started looking into it and almost everything I've learned so far is basically everything I've learned before but in a different context. My mind is just blown that I was assuming ML was something unattainable for me and it turns out I've been doing it for years
@statquest Жыл бұрын
bam!
@yx14745 ай бұрын
same applied math undergraduate student who switched to AI field as a postgraduate student now🙂
@qbaliu64628 ай бұрын
This channel has helped me so much during my studies 🎉
@statquest8 ай бұрын
Happy to hear that!
@hli21473 жыл бұрын
This is the only lecture that makes me feel not stupid...
@statquest3 жыл бұрын
:)
@sampyism6 ай бұрын
Your videos and voice make ML and statistics fun to learn. :)
@statquest6 ай бұрын
Glad you like them!
@chenzhiyao8343 жыл бұрын
you explained much clearer than my lecturer in ML lecture.
@statquest3 жыл бұрын
Thanks!
@joganice21976 ай бұрын
this was the best explanation i've ever seen in my life, (i'm not even a english native speaker, i'm brazilian lol)
@statquest6 ай бұрын
Muito obrigado! :)
@haofu16734 жыл бұрын
Great video! If people are willing to spend time on videos like this rather than Tiktok, the wold would be a much better place.
@statquest4 жыл бұрын
Thank you very much! :)
@tianhuicao32974 жыл бұрын
These videos are amazing !!! Truly a survival pack for my DS class👍
@statquest4 жыл бұрын
Bam! :)
@MrRynRules3 жыл бұрын
Daym, your videos are so good at explaining complicated ideas!! Like holy shoot, I am going to use this, multiple predictors ideas to figure out the ending of inception, Was it dream, or was it not a dream!
@statquest3 жыл бұрын
BAM! :)
@CyberGimen5 ай бұрын
Bam! I love your teaching style!!!
@statquest5 ай бұрын
Thanks!
@CyberGimen5 ай бұрын
@@statquest I think you should explain some formula briefly. Like in Naive Bayes algorithm, you'd better explain why P(N)*P(Dear|N)*P(Friend|N)=P(N|Dear,Friend). I use GPT to finally understand it.
@statquest5 ай бұрын
@@CyberGimen I've got a whole video about that here: kzbin.info/www/bejne/b6imn6mobL2qaqc However, the reason I don't mention it in this video is that it's actually not critical to using the method.
@maruthiprasad81844 ай бұрын
superb cool explanation. I am big fan of your explanation. Once I went through your explanation, I don't want any further reference for that topic.
@statquest4 ай бұрын
Thanks!
@samuelschonenberger2 жыл бұрын
These gloriously wierd examples really are needed to understand a concept
@statquest2 жыл бұрын
Thanks!
@anje8892 жыл бұрын
contents are excellent and also i love your intro quite a lot (its super impressive for me) btw. thanking for doing this at the fisrt place as a beginner some concepts are literally hard to understand but after watching your videos things are a lot better than before. Thanks :)
@statquest2 жыл бұрын
I'm glad my videos are helpful! :)
@sudhashankar10404 жыл бұрын
This video on Gaussian Naive Bayes has been very well explained. Thanks a lot.😊
@statquest4 жыл бұрын
Most welcome 😊
@Adam_04644 жыл бұрын
Thank you, You have made the theory concrete and visible!
@statquest4 жыл бұрын
Thanks!
@WillChannelUS4 жыл бұрын
This channel should have 2.74M subscribers instead of 274K.
@statquest4 жыл бұрын
One day I hope that happens! :)
@georgeruellan4 жыл бұрын
This series is helping me so much with my dissertation, thank you!!
@statquest4 жыл бұрын
Awesome and good luck with your disertation!
@Theviswanath573 жыл бұрын
In Stats Playlist, we used following notation for P( Data | Model ) for probability & L(Model | Data) for likelihood; Here we are writing likelihood as L(popcorn=20 | Loves) which I guess L( Data | Model );
@statquest3 жыл бұрын
Unfortunately the notation is somewhat flexible and inconsistent - not just in my videos, but in the the field in general. The important thing is to know that likelihoods are always the y-axis values, and probabilities are the areas.
@Theviswanath573 жыл бұрын
@@statquest understood; somewhere in the playlist you mentioned that likelihood is relative probability; and I guess this neatly summaries how likelihood and probability
@radicalpotato666 Жыл бұрын
I just had the exact same question when I started writing the expression in my notebook. I am more acquainted with the L(Model | Data) notation.
@Vivaswaan.4 жыл бұрын
The demarcation of topics in the seek bar is useful and helpful. Nice addition.
@statquest4 жыл бұрын
Glad you liked it. It's a new feature that KZbin just rolled out so I've spent the past day (and will spend the next few days) adding it to my videos.
@anitapallenberg6904 жыл бұрын
@@statquest We really appreciate all your dedication into the channel! It's 100% awesomeness :)
@statquest4 жыл бұрын
@@anitapallenberg690 Hooray! Thank you! :)
@meysamamini94733 жыл бұрын
I'm Having great time watching Ur videos ❤️
@statquest3 жыл бұрын
Thanks!
@ADESHKUMAR-yz2el4 жыл бұрын
i promise i will join the membership and buy your products when i get a job... BAM!!!
@statquest4 жыл бұрын
Hooray! Thank you very much for your support!
@akashchakraborty64314 жыл бұрын
You have really helped me a lot. Thanks Sir. May you prosper more and keep helping students who cant afford paid content :)
@statquest4 жыл бұрын
Thank you! :)
@liranzaidman16104 жыл бұрын
How do people come up with these crazy ideas? it's amazing, thanks a lot for another fantastic video
@statquest4 жыл бұрын
Thank you again!
@auzaluis4 жыл бұрын
The world needs more Joshuas!
@statquest4 жыл бұрын
Thanks! :)
@sayanbhowmick920310 ай бұрын
Great style of teaching & also thank you so much for such a great video (Note : I have bought your book "The StatQuest illustrated guide to machine learning") 😃
@statquest10 ай бұрын
Thank you so much for supporting StatQuest!
@jiheonlee40654 жыл бұрын
Thank you for another excellent Statquest !~
@statquest4 жыл бұрын
Bam! :)
@prashuk-ducs7 ай бұрын
Why the fuck does this video make it look so easy and makes 100 percent sense?
@therealbatman6642 жыл бұрын
Your videos are really great !! my prof made it way harder!!
@statquest2 жыл бұрын
Thanks!
@Mustafa-0993 жыл бұрын
Hey Josh I hope you are having a wonderful day, I was searching for a video on " Gaussian mixture model " on your channel but couldn't find one, I have a request for that video since the concept is a bit complicated elsewhere Also btw your videos enabled to get one of the highest scores in the test conducted recently in my college, all thanks to you Josh, you are awesome
@statquest3 жыл бұрын
Thanks! I'll keep that topic in mind.
@Darkev773 жыл бұрын
3:38, shouldn’t the notation be L(Loves | popcorn=20), since we’re given that he eats 20g of popcorn, how likely is that sample generated from the Loves distribution. Isn’t that right?
@statquest3 жыл бұрын
The notation in the video is most common, however, the notation doesn't really matter as long as it is clear that we want the y-axis coordinate.
@rogertea18573 жыл бұрын
Another great tutorial, thank you!
@statquest3 жыл бұрын
Thanks!
@ahhhwhysocute4 жыл бұрын
Thanks for the video !! it was very helpful and easy to understand
@statquest4 жыл бұрын
Glad it was helpful!
@konmemes3293 жыл бұрын
Your video just helped me a lot !
@statquest3 жыл бұрын
Glad it helped!
@tcidude4 жыл бұрын
Josh. I love you your videos. I've been following your channel for a while. Your videos are absolutely great! Would you consider covering more of Bayesian statistics in the future?
@statquest4 жыл бұрын
I'll keep it in mind.
@tagoreji21432 жыл бұрын
Tqsm Sir for the Very Valuable Information
@statquest2 жыл бұрын
Thanks! :)
@heteromodal3 жыл бұрын
Thank you Josh for another great video! Also, this (and other vids) makes think I should watch Troll 2, just to tick that box.
@statquest3 жыл бұрын
Ha! Let me know what you think!
@mukulsaluja61093 жыл бұрын
Best video i have ever seen
@statquest3 жыл бұрын
:)
@Steve-3P04 жыл бұрын
+5000 for using an example as obscure and as obscene as Troll 2.
@statquest4 жыл бұрын
:)
@yuniprastika70224 жыл бұрын
can't wait for your channel to BAAM! going worldwide!!
@statquest4 жыл бұрын
Me too!!
@RFS_13 жыл бұрын
Love the explaination BAM!
@statquest3 жыл бұрын
BAM! :)
@MinhPham-jq9wu3 жыл бұрын
So great, this video so helpful
@statquest3 жыл бұрын
Glad it was helpful!
@patrycjakasperska7272 Жыл бұрын
Love your channel
@statquest Жыл бұрын
Thanks!
@worksmarter64183 жыл бұрын
Super awesome, thank you. Useful for my Intro to Artificial Intelligence course.
@statquest3 жыл бұрын
Glad it was helpful!
@alanamerkhanov6040 Жыл бұрын
Hi, Josh. Troll 2 is a good movie... Thanks
@statquest Жыл бұрын
bam!
@ArinzeDavid2 жыл бұрын
awesome stuff for real
@statquest2 жыл бұрын
Thank you!
@jonathanjacob5453 Жыл бұрын
Looks like I have to check out the quests before getting to this one😂
@statquest Жыл бұрын
:)
@amitg24764 жыл бұрын
Hi Josh, I wanted to know as to how do we get the likelihood from the y axis ?? lets say in the video at 4:12 you get the likelihood from the y axis for drinks 500 ml of soda given the person loves troll 2 to be 0.004. So how are we getting 0.004 ?
@statquest4 жыл бұрын
That distribution has a mean = 500 and standard deviation = 100. So I plug those numbers, plus x = 500 into the equation for a normal distribution (see kzbin.info/www/bejne/ep-Zk2yceK6Ipq8 ) and the value that comes out is 0.004.
@amitg24764 жыл бұрын
@@statquest Thanks a lot for clearing it up !!
@AmanKumar-oq8sm4 жыл бұрын
Hey Josh, Thank you for making these amazing videos. Please make a video on the "Bayesian Networks" too.
@statquest4 жыл бұрын
I'll keep it in mind.
@vinaykumardaivajna5260 Жыл бұрын
Awesome as always
@statquest Жыл бұрын
Thanks again! :)
@diraczhu93473 жыл бұрын
Great video!
@statquest3 жыл бұрын
Thanks!
@camilamiraglia80774 жыл бұрын
Thanks for the great video! I would just like to point out that in my opinion if you are talking about log() when the base is e, it is easier (and more correct) to write ln().
@statquest4 жыл бұрын
In statistics, programming and machine learning, "ln()" is written "log()", so I'm just following the conventions used in the field.
@ahmedshifa9 ай бұрын
These videos are extremely valuable, thank you for sharing them. I feel that they really help to illuminate the material. Quick question though: where do you get the different probabilities, like for popcorn, soda pop, and candy? How do we calculate those in this context? Do you use the soda a person drinks and divide it by the total soda, and same with popcorn, and candy?
@statquest9 ай бұрын
What time point are you asking about (in minutes and seconds). The only probabilities we use in this video are if someone loves or doesn't love troll 2. Everything else is a likelihood, which is just a y-axis coordinate.
@sejongchun83504 жыл бұрын
Troll 2 is an awesome classic, and should not be up for debate. =)
@statquest4 жыл бұрын
Ha! :)
@mohammadelghandour16142 жыл бұрын
Great work ! In 8:11 How can we use cross validation with Gaussian Naive Bayes? I have watched the Cross validation video but I still can't figure out how to employ cross validation to know that candy can make the best classification.
@statquest2 жыл бұрын
to apply cross validation, we divide the training data into different groups - then we use all of the groups, minus 1, to create a gaussian naive bayes model. Then we use that model to make predictions based on the last group. Then we repeat, each time using a different group to test the model.
@johnel40053 жыл бұрын
BAM! Someone is going to pass the exam this semester .
@statquest3 жыл бұрын
Hooray!
@initdialog4 жыл бұрын
Finally worked up to the Gaussian Naive Bayes. BAM! "If you are not familiar with ..." :(
@anitapallenberg6904 жыл бұрын
You can do it! :) StatQuest made me lose my anxiety for statistics. It's truly brilliant, just start with the next video!
@statquest4 жыл бұрын
BAM! :)
@konstantinlevin8651 Жыл бұрын
I'm a simple man, I watch statquests in the nights, leave a like and go chat about it with chatgpt.That's it.
@statquest Жыл бұрын
bam! :)
@nzsvus4 жыл бұрын
BAM! thanks, Josh! It would be amazing if you can make a StatQuest concerning A/B testing :)
@statquest4 жыл бұрын
It's on the to-do list. :)
@YesEnjoy55 Жыл бұрын
Great so much Thanks!
@statquest Жыл бұрын
You're welcome!
@rrrprogram86674 жыл бұрын
Thanks for the awesome video..
@statquest4 жыл бұрын
You bet!
@r0cketRacoon5 ай бұрын
A really comprehensive video. Thank you! Sir, I have some questions about the conditions when applying this algo: 1. Is it compulsory that all features contain continuous value? 2. What happens if a feature doesn't have gaussian distribution? Is it worth to apply this algo? 3. If that, I will find a function that makes that feature have gaussian distribution. Can it work? And also, Do u plan to do a video about Bernoulli Naive Bayes?
@statquest5 ай бұрын
1. No - you can mix things up. I illustrate this in my book. 2. You can use other distributions 3. No need, just use the other distribution. 4. Not in the short term.
@deepshikhaagarwal4125 Жыл бұрын
Thank you josh your videos are amazing! HoW to buy study guides from statquest
@statquest Жыл бұрын
See: statquest.gumroad.com/
@iamkrishn3 жыл бұрын
This intro is my favorite idk why! :)
@statquest3 жыл бұрын
BAM! :)
@introvert0731 Жыл бұрын
how is likellihood calculated in 4:17 can you please clear
@statquest Жыл бұрын
Likelihood is the y-axis coordinate associated with a specific x-axis value. So, in this case, I plugged the x-axis value in to the equation for a normal distribution with the mean set to 24 and the standard deviation set to 4. I then did the math (well, to be honest, I got a computer to do the math) and got the y-axis coordinate.
@콘충이4 жыл бұрын
Can you talk about Kernel estimation in the future?? Bam!
@statquest4 жыл бұрын
I will consider it.
@xmartazi6 ай бұрын
I love you bro !
@statquest6 ай бұрын
Thanks!
@sumanbindu26783 жыл бұрын
Amazing videos. The beep boop sound reminds me of squid games
@statquest3 жыл бұрын
Maybe they got the sound from my video! :)
@ravirajshinde4653 жыл бұрын
can you please tell me the difference of likelihood prob and normal Gaussian pdf (prob), as we know we cannot find the value at a single point in Gaussian distribution , but here we are taking that
@ravirajshinde4653 жыл бұрын
i got your different video and also the answer to my question kzbin.info/www/bejne/porbf4aLebh5fpY
@statquest3 жыл бұрын
bam
@aicancode56764 жыл бұрын
I dont even know why there is people disliking this video!!
@statquest4 жыл бұрын
It's always a mystery. :)
@piyushdadgal3 жыл бұрын
Thanku bam🔥🔥
@statquest3 жыл бұрын
:)
@linianhe Жыл бұрын
dude you are awesome
@statquest Жыл бұрын
Thank you!
@taetaereporter Жыл бұрын
thank you for ur service T.T
@dipinpaul58944 жыл бұрын
Excellent explanation. Any NLP series coming up ? Struggling to find good resources.
@statquest4 жыл бұрын
I'm working on Neural Networks right now.
@ragulshan64904 жыл бұрын
@@statquest it's going to be BAM!!
@Geza_Molnar_4 жыл бұрын
Hi - another great explanation! I wonder what would be the result if you normalise the probabilies of the 3 values. - Would it affect the outcome of the example in this video? - Which areas of values are affected: different outcomes with non-normalised and normalised distributions (=probability or likelihood here)?
@statquest4 жыл бұрын
Interesting questions! You should try it out and see what you get.
@Geza_Molnar_4 жыл бұрын
@@statquest Hi, that only make sense with real data. Without that, only juggling with equations and abstract parameters, the thing is not enough 'visual', IMO. Though, could run through the calculations with e.g. 2x scale, 10x scale and 100x scale... Maybe, when I have free few hours.
@kirilblazevski83292 жыл бұрын
Since the likelihood can be greater than 1, doesn't that mean that we could get probability that is greater than 1?
@statquest2 жыл бұрын
No, probability is the area under the curve and those are defined such that the total area under the curve is always 1. For details, see: kzbin.info/www/bejne/porbf4aLebh5fpY
@kirilblazevski83292 жыл бұрын
@@statquest Dear Dr. Starmer, Thank you for your reply. I have another follow-up question regarding the calculation of probabilities for continuous random variables (i.e. what this video is about). From my understanding, when we have discrete random variables, the probability of a given outcome P(Y=y|X1,X2,..Xn) is proportional to the product of the probabilities of the individual variables given the outcome, times the prior probability (assuming conditional independence). i.e. P(Y=y) * the product of P(Xi=xi | Y=y) This makes sense to me, because the result is a probability value between 0 and 1. However, in the case of continuous random variables, the probability of a given outcome is zero, so we instead calculate the likelihood of the outcome. This means that the product of the individual likelihoods is no longer a probability value between 0 and 1. Is this correct? What I mean is: P(Y=y) * the product of L(Xi=xi | Y=y) is not guaranteed to be a value between 0 and 1. Thank you for your expertise and for being such a valuable educator. 💖
@statquest2 жыл бұрын
@@kirilblazevski8329 That's correct, with the continuous version, we do not end up with probabilities. However, if you saw my video on the discrete version of Naive Bayes ( kzbin.info/www/bejne/hWOvY4isbtWXeqM ) you'll notice that I call the results "scores" instead of probabilities. The reason for this is that in both cases (discrete and continuous), to get the correct probabilities for the results, you need to divide the results (what I call "scores") by the sum of the scores for the two possibilities. By doing this, you normalize the scores for the two possibilities so that they will add up to 1.
@kirilblazevski83292 жыл бұрын
@@statquest Now I understand what I was missing. Thank you for clarifying, I really appreciate it!!
@franssjostrom7193 жыл бұрын
Tough being a ML teacher these days with you around
@statquest3 жыл бұрын
bam!
@santoshbala96904 жыл бұрын
Hi Josh.. Thank you very much for your tutorial video. I am a big fan sir I have a clarification. The P(Love Troll) or P (No love Troll) given the 3 variables - here in this example - we multiply the Prior Probability of the class with the likelihood of the variables given the class ... However as per Bayes's Theorem, it is also divided by the probability (or likelihood) of the variables... which is not done in this tutorial, same with the Naive Bayes "clearly explained" tutorial... I am sorry if have asked something "naive" :)
@statquest4 жыл бұрын
You have hit on one of the reasons I do not mention bayes' theorem in either of these videos. These methods are called "naive bayes", but they only use the numerator of that equation, because calculating the denominator would be hard to do. That said, the denominator would be the same for both classes, so it scales all "scores" by the same amount. And since we are only interested in the highest relative score, we can omit the denominator and still get the job done.
@santoshbala96904 жыл бұрын
@@statquest Thank You very much for the clarification
@samuelbmartins3 жыл бұрын
Josh, a question about the formulation of Bayes' Theorem, especially considering the likelihood. For Naive Bayes, the formula is: P(class | X) = P(class) * P(X | class), in which the last term. is the likelihood In your video, you represented the likelihood as L, so that, apparently, the formula would be: P(No Love | X) = P(No Love) * L(X | No Love) (1) Is my assumption correct? Is it just a change of letters to mean the same thing? (2) Or is there any other math under the hoods? For example, something like: P(X | class) = L(No Love | X) Thanks in advance.
@statquest3 жыл бұрын
When I use the notation "L(something)" for "likelihood", I mean that we want the corresponding y-axis coordinate for that something. However, not everyone uses that notation. Some put p(something) and you have to figure out from the context whether or not they are talking about a likelihood (y-axis coordinate) or, potentially, a probability (since "p" often refers to "probability"). So, if you use my notation, then you are correct, you get: P(No Love | X) = P(No Love) * L(X | No Love)
@shailukonda4 жыл бұрын
Could you please make a video on Time Series Analysis (Arima model)?
@statquest4 жыл бұрын
One day I'll do that.
@unfinishedsentenc98643 жыл бұрын
Can we use logistic regression too to predict if a person loves the movie or not?
@statquest3 жыл бұрын
Yes
@kartikmalladi1918 Жыл бұрын
I've seen the cross validation video and the main thing that it does is consider diff training set and test model in a data set. In this video, are you trying to say cross validation helps for the accurate prediction and percentage contribution/coefficients give the decisive main important factor as candy? Thanks
@statquest Жыл бұрын
Cross validation can be used for all sorts of comparisons.
@MrElliptific4 жыл бұрын
Thanks for this super clear explanation. Why would we prefer this method for classification over a gradient boosting algorithm? When we have too few samples?
@statquest4 жыл бұрын
With relatively small datasets it's simple and fast and super lightweight.