Gaussian Naive Bayes, Clearly Explained!!!

  Рет қаралды 360,972

StatQuest with Josh Starmer

StatQuest with Josh Starmer

Күн бұрын

Пікірлер
@statquest
@statquest 4 жыл бұрын
NOTE: This StatQuest is sponsored by JADBIO. Just Add Data, and their automatic machine learning algorithms will do all of the work for you. For more details, see: bit.ly/3bxtheb BAM! Corrections: 3:42 I said 10 grams of popcorn, but I should have said 20 grams of popcorn given that they love Troll 2. Support StatQuest by buying my books The StatQuest Illustrated Guide to Machine Learning, The StatQuest Illustrated Guide to Neural Networks and AI, or a Study Guide or Merch!!! statquest.org/statquest-store/
@phildegreat
@phildegreat 3 жыл бұрын
website not working?
@statquest
@statquest 3 жыл бұрын
@@phildegreat Thanks! The site is back up.
@anirbanpatra3017
@anirbanpatra3017 2 жыл бұрын
8:15 There's a minor error in the slide 'help use decide' . You really are a great teacher.Wish I could Meet you in person some day.
@rohan2609
@rohan2609 3 жыл бұрын
4 weeks back I had no idea what is machine learning, but your videos have really made a difference in my life, they are all so clearly explained and fun to watch, I just got a job and I mentioned some of the learnings I had from your channel, I am grateful for your contribution in my life.
@statquest
@statquest 3 жыл бұрын
Happy to help!
@lowerbound4803
@lowerbound4803 3 жыл бұрын
Congratulations!!
@rimurusama9695
@rimurusama9695 2 жыл бұрын
That is a HUGE help my friend, congrats.. !!
@mildlyinteresting1925
@mildlyinteresting1925 4 жыл бұрын
Following your channel for over 6 months now sir, your explanations are truly amazing..
@statquest
@statquest 4 жыл бұрын
Thank you very much! :)
@tassoskat8623
@tassoskat8623 4 жыл бұрын
This is by far my favorite educational KZbin channel. Everything is explained in a simple, practical and fun way. The videos are full of positive vibes just from the beginning with the silly song entry. I love the catch phrases. Statquest is addictive!
@statquest
@statquest 4 жыл бұрын
Thank you very much! :)
@raa__va4814
@raa__va4814 2 жыл бұрын
Im at the point where my syllabus does not require me to look into all of this but im just having too much fun learning with you. Im glad i took this course up to find your videos
@statquest
@statquest 2 жыл бұрын
Hooray! :)
@amirrezamousavi5139
@amirrezamousavi5139 3 жыл бұрын
My little knowledge about machine learning could not be derived without your tutorials. Thank you very much
@statquest
@statquest 3 жыл бұрын
Glad I could help!
@TheVijaySaravana
@TheVijaySaravana 3 жыл бұрын
I have watched over 2-3 hours of lecture about Gaussian Naive Bayes. Now is when I feel my understanding is complete.
@statquest
@statquest 3 жыл бұрын
Hooray!
@minweideng4595
@minweideng4595 4 жыл бұрын
Thank you Josh. You deserve all the praises. I have been struggling with a lot of the concepts on traditional classic text books as they tend to "jump" quite a lot. You channel brings all of them to life vividly. This is my go to reference source now.
@statquest
@statquest 4 жыл бұрын
Awesome! I'm glad my videos are helpful.
@sakhawath19
@sakhawath19 4 жыл бұрын
If I remember all the best educator's name on KZbin, you always come at the beginning! You are a flawless genius!
@statquest
@statquest 4 жыл бұрын
Thank you! 😃
@leowei2575
@leowei2575 Жыл бұрын
WOOOOOOW. I watched every video of yours, recommended in the description of this video, and now this video. Everything makes much more sense now. It helped me a lot to undersand the Gaussian Naive Bayes algorithm implemented and available from scikit-learn for applications in machine learning. Just awesome. Thank you!!!
@statquest
@statquest Жыл бұрын
Wow, thanks!
@mohit10singh
@mohit10singh 4 жыл бұрын
I am a beginner in Machine Learning field, and your channel helped me alot, almost went through all the videos, very nice way of explaining. Really appreciate you for making these videos and helping everyone. You just saved me ... Thank you very much...
@statquest
@statquest 4 жыл бұрын
Thank you very much! :)
@argonaise_jay
@argonaise_jay 2 жыл бұрын
One of the best channel for learners that the world can offer..
@statquest
@statquest 2 жыл бұрын
Thank you!
@pinesasyg9894
@pinesasyg9894 2 жыл бұрын
amazing kowledge with incredible communication skills..world will change if every student has such great teacher
@statquest
@statquest 2 жыл бұрын
Thank you!
@zitravelszikazii894
@zitravelszikazii894 6 ай бұрын
Thank you for the prompt response. I’m fairly new to Stats. But this video prompted me to do a lot more research and I’m finally confident on how you got to the result. Thank you for your videos. They are so helpful
@statquest
@statquest 6 ай бұрын
Glad it was helpful!
@WorthyVII
@WorthyVII 2 жыл бұрын
Literally the best video ever on this.
@statquest
@statquest 2 жыл бұрын
Thank you!
@samuelbmartins
@samuelbmartins 3 жыл бұрын
Hi, Josh. Thank you so much for all the exceptional content from your channel. Your work is amazing. I'm a professor in Brazil of Computer Science and ML and your videos have been supporting me a lot. You're an inspiration for me. Best.
@statquest
@statquest 3 жыл бұрын
Muito obrigado!
@yuxinzhang4228
@yuxinzhang4228 4 жыл бұрын
It's amazing! Thank you so much ! Our professor let us self-teach the Gaussian naive bayes and I absolutely don't understand her slides with many many math equations. Thanks again for your vivid videos !!
@statquest
@statquest 4 жыл бұрын
Glad it was helpful!
@sairamsubramaniam8316
@sairamsubramaniam8316 3 жыл бұрын
Sir, this playlist is a one-stop solution for quick interview preparations. Thanks a lot sir.
@statquest
@statquest 3 жыл бұрын
Good luck with your interviews! :)
@Godofwarares1
@Godofwarares1 Жыл бұрын
This is crazy I went to school for Applied Mathematics and it never crossed my mind that what I learned was machine learning as chatgpt came into the lime light I started looking into it and almost everything I've learned so far is basically everything I've learned before but in a different context. My mind is just blown that I was assuming ML was something unattainable for me and it turns out I've been doing it for years
@statquest
@statquest Жыл бұрын
bam!
@yx1474
@yx1474 5 ай бұрын
same applied math undergraduate student who switched to AI field as a postgraduate student now🙂
@qbaliu6462
@qbaliu6462 8 ай бұрын
This channel has helped me so much during my studies 🎉
@statquest
@statquest 8 ай бұрын
Happy to hear that!
@hli2147
@hli2147 3 жыл бұрын
This is the only lecture that makes me feel not stupid...
@statquest
@statquest 3 жыл бұрын
:)
@sampyism
@sampyism 6 ай бұрын
Your videos and voice make ML and statistics fun to learn. :)
@statquest
@statquest 6 ай бұрын
Glad you like them!
@chenzhiyao834
@chenzhiyao834 3 жыл бұрын
you explained much clearer than my lecturer in ML lecture.
@statquest
@statquest 3 жыл бұрын
Thanks!
@joganice2197
@joganice2197 6 ай бұрын
this was the best explanation i've ever seen in my life, (i'm not even a english native speaker, i'm brazilian lol)
@statquest
@statquest 6 ай бұрын
Muito obrigado! :)
@haofu1673
@haofu1673 4 жыл бұрын
Great video! If people are willing to spend time on videos like this rather than Tiktok, the wold would be a much better place.
@statquest
@statquest 4 жыл бұрын
Thank you very much! :)
@tianhuicao3297
@tianhuicao3297 4 жыл бұрын
These videos are amazing !!! Truly a survival pack for my DS class👍
@statquest
@statquest 4 жыл бұрын
Bam! :)
@MrRynRules
@MrRynRules 3 жыл бұрын
Daym, your videos are so good at explaining complicated ideas!! Like holy shoot, I am going to use this, multiple predictors ideas to figure out the ending of inception, Was it dream, or was it not a dream!
@statquest
@statquest 3 жыл бұрын
BAM! :)
@CyberGimen
@CyberGimen 5 ай бұрын
Bam! I love your teaching style!!!
@statquest
@statquest 5 ай бұрын
Thanks!
@CyberGimen
@CyberGimen 5 ай бұрын
@@statquest I think you should explain some formula briefly. Like in Naive Bayes algorithm, you'd better explain why P(N)*P(Dear|N)*P(Friend|N)=P(N|Dear,Friend). I use GPT to finally understand it.
@statquest
@statquest 5 ай бұрын
@@CyberGimen I've got a whole video about that here: kzbin.info/www/bejne/b6imn6mobL2qaqc However, the reason I don't mention it in this video is that it's actually not critical to using the method.
@maruthiprasad8184
@maruthiprasad8184 4 ай бұрын
superb cool explanation. I am big fan of your explanation. Once I went through your explanation, I don't want any further reference for that topic.
@statquest
@statquest 4 ай бұрын
Thanks!
@samuelschonenberger
@samuelschonenberger 2 жыл бұрын
These gloriously wierd examples really are needed to understand a concept
@statquest
@statquest 2 жыл бұрын
Thanks!
@anje889
@anje889 2 жыл бұрын
contents are excellent and also i love your intro quite a lot (its super impressive for me) btw. thanking for doing this at the fisrt place as a beginner some concepts are literally hard to understand but after watching your videos things are a lot better than before. Thanks :)
@statquest
@statquest 2 жыл бұрын
I'm glad my videos are helpful! :)
@sudhashankar1040
@sudhashankar1040 4 жыл бұрын
This video on Gaussian Naive Bayes has been very well explained. Thanks a lot.😊
@statquest
@statquest 4 жыл бұрын
Most welcome 😊
@Adam_0464
@Adam_0464 4 жыл бұрын
Thank you, You have made the theory concrete and visible!
@statquest
@statquest 4 жыл бұрын
Thanks!
@WillChannelUS
@WillChannelUS 4 жыл бұрын
This channel should have 2.74M subscribers instead of 274K.
@statquest
@statquest 4 жыл бұрын
One day I hope that happens! :)
@georgeruellan
@georgeruellan 4 жыл бұрын
This series is helping me so much with my dissertation, thank you!!
@statquest
@statquest 4 жыл бұрын
Awesome and good luck with your disertation!
@Theviswanath57
@Theviswanath57 3 жыл бұрын
In Stats Playlist, we used following notation for P( Data | Model ) for probability & L(Model | Data) for likelihood; Here we are writing likelihood as L(popcorn=20 | Loves) which I guess L( Data | Model );
@statquest
@statquest 3 жыл бұрын
Unfortunately the notation is somewhat flexible and inconsistent - not just in my videos, but in the the field in general. The important thing is to know that likelihoods are always the y-axis values, and probabilities are the areas.
@Theviswanath57
@Theviswanath57 3 жыл бұрын
@@statquest understood; somewhere in the playlist you mentioned that likelihood is relative probability; and I guess this neatly summaries how likelihood and probability
@radicalpotato666
@radicalpotato666 Жыл бұрын
I just had the exact same question when I started writing the expression in my notebook. I am more acquainted with the L(Model | Data) notation.
@Vivaswaan.
@Vivaswaan. 4 жыл бұрын
The demarcation of topics in the seek bar is useful and helpful. Nice addition.
@statquest
@statquest 4 жыл бұрын
Glad you liked it. It's a new feature that KZbin just rolled out so I've spent the past day (and will spend the next few days) adding it to my videos.
@anitapallenberg690
@anitapallenberg690 4 жыл бұрын
@@statquest We really appreciate all your dedication into the channel! It's 100% awesomeness :)
@statquest
@statquest 4 жыл бұрын
@@anitapallenberg690 Hooray! Thank you! :)
@meysamamini9473
@meysamamini9473 3 жыл бұрын
I'm Having great time watching Ur videos ❤️
@statquest
@statquest 3 жыл бұрын
Thanks!
@ADESHKUMAR-yz2el
@ADESHKUMAR-yz2el 4 жыл бұрын
i promise i will join the membership and buy your products when i get a job... BAM!!!
@statquest
@statquest 4 жыл бұрын
Hooray! Thank you very much for your support!
@akashchakraborty6431
@akashchakraborty6431 4 жыл бұрын
You have really helped me a lot. Thanks Sir. May you prosper more and keep helping students who cant afford paid content :)
@statquest
@statquest 4 жыл бұрын
Thank you! :)
@liranzaidman1610
@liranzaidman1610 4 жыл бұрын
How do people come up with these crazy ideas? it's amazing, thanks a lot for another fantastic video
@statquest
@statquest 4 жыл бұрын
Thank you again!
@auzaluis
@auzaluis 4 жыл бұрын
The world needs more Joshuas!
@statquest
@statquest 4 жыл бұрын
Thanks! :)
@sayanbhowmick9203
@sayanbhowmick9203 10 ай бұрын
Great style of teaching & also thank you so much for such a great video (Note : I have bought your book "The StatQuest illustrated guide to machine learning") 😃
@statquest
@statquest 10 ай бұрын
Thank you so much for supporting StatQuest!
@jiheonlee4065
@jiheonlee4065 4 жыл бұрын
Thank you for another excellent Statquest !~
@statquest
@statquest 4 жыл бұрын
Bam! :)
@prashuk-ducs
@prashuk-ducs 7 ай бұрын
Why the fuck does this video make it look so easy and makes 100 percent sense?
@therealbatman664
@therealbatman664 2 жыл бұрын
Your videos are really great !! my prof made it way harder!!
@statquest
@statquest 2 жыл бұрын
Thanks!
@Mustafa-099
@Mustafa-099 3 жыл бұрын
Hey Josh I hope you are having a wonderful day, I was searching for a video on " Gaussian mixture model " on your channel but couldn't find one, I have a request for that video since the concept is a bit complicated elsewhere Also btw your videos enabled to get one of the highest scores in the test conducted recently in my college, all thanks to you Josh, you are awesome
@statquest
@statquest 3 жыл бұрын
Thanks! I'll keep that topic in mind.
@Darkev77
@Darkev77 3 жыл бұрын
3:38, shouldn’t the notation be L(Loves | popcorn=20), since we’re given that he eats 20g of popcorn, how likely is that sample generated from the Loves distribution. Isn’t that right?
@statquest
@statquest 3 жыл бұрын
The notation in the video is most common, however, the notation doesn't really matter as long as it is clear that we want the y-axis coordinate.
@rogertea1857
@rogertea1857 3 жыл бұрын
Another great tutorial, thank you!
@statquest
@statquest 3 жыл бұрын
Thanks!
@ahhhwhysocute
@ahhhwhysocute 4 жыл бұрын
Thanks for the video !! it was very helpful and easy to understand
@statquest
@statquest 4 жыл бұрын
Glad it was helpful!
@konmemes329
@konmemes329 3 жыл бұрын
Your video just helped me a lot !
@statquest
@statquest 3 жыл бұрын
Glad it helped!
@tcidude
@tcidude 4 жыл бұрын
Josh. I love you your videos. I've been following your channel for a while. Your videos are absolutely great! Would you consider covering more of Bayesian statistics in the future?
@statquest
@statquest 4 жыл бұрын
I'll keep it in mind.
@tagoreji2143
@tagoreji2143 2 жыл бұрын
Tqsm Sir for the Very Valuable Information
@statquest
@statquest 2 жыл бұрын
Thanks! :)
@heteromodal
@heteromodal 3 жыл бұрын
Thank you Josh for another great video! Also, this (and other vids) makes think I should watch Troll 2, just to tick that box.
@statquest
@statquest 3 жыл бұрын
Ha! Let me know what you think!
@mukulsaluja6109
@mukulsaluja6109 3 жыл бұрын
Best video i have ever seen
@statquest
@statquest 3 жыл бұрын
:)
@Steve-3P0
@Steve-3P0 4 жыл бұрын
+5000 for using an example as obscure and as obscene as Troll 2.
@statquest
@statquest 4 жыл бұрын
:)
@yuniprastika7022
@yuniprastika7022 4 жыл бұрын
can't wait for your channel to BAAM! going worldwide!!
@statquest
@statquest 4 жыл бұрын
Me too!!
@RFS_1
@RFS_1 3 жыл бұрын
Love the explaination BAM!
@statquest
@statquest 3 жыл бұрын
BAM! :)
@MinhPham-jq9wu
@MinhPham-jq9wu 3 жыл бұрын
So great, this video so helpful
@statquest
@statquest 3 жыл бұрын
Glad it was helpful!
@patrycjakasperska7272
@patrycjakasperska7272 Жыл бұрын
Love your channel
@statquest
@statquest Жыл бұрын
Thanks!
@worksmarter6418
@worksmarter6418 3 жыл бұрын
Super awesome, thank you. Useful for my Intro to Artificial Intelligence course.
@statquest
@statquest 3 жыл бұрын
Glad it was helpful!
@alanamerkhanov6040
@alanamerkhanov6040 Жыл бұрын
Hi, Josh. Troll 2 is a good movie... Thanks
@statquest
@statquest Жыл бұрын
bam!
@ArinzeDavid
@ArinzeDavid 2 жыл бұрын
awesome stuff for real
@statquest
@statquest 2 жыл бұрын
Thank you!
@jonathanjacob5453
@jonathanjacob5453 Жыл бұрын
Looks like I have to check out the quests before getting to this one😂
@statquest
@statquest Жыл бұрын
:)
@amitg2476
@amitg2476 4 жыл бұрын
Hi Josh, I wanted to know as to how do we get the likelihood from the y axis ?? lets say in the video at 4:12 you get the likelihood from the y axis for drinks 500 ml of soda given the person loves troll 2 to be 0.004. So how are we getting 0.004 ?
@statquest
@statquest 4 жыл бұрын
That distribution has a mean = 500 and standard deviation = 100. So I plug those numbers, plus x = 500 into the equation for a normal distribution (see kzbin.info/www/bejne/ep-Zk2yceK6Ipq8 ) and the value that comes out is 0.004.
@amitg2476
@amitg2476 4 жыл бұрын
@@statquest Thanks a lot for clearing it up !!
@AmanKumar-oq8sm
@AmanKumar-oq8sm 4 жыл бұрын
Hey Josh, Thank you for making these amazing videos. Please make a video on the "Bayesian Networks" too.
@statquest
@statquest 4 жыл бұрын
I'll keep it in mind.
@vinaykumardaivajna5260
@vinaykumardaivajna5260 Жыл бұрын
Awesome as always
@statquest
@statquest Жыл бұрын
Thanks again! :)
@diraczhu9347
@diraczhu9347 3 жыл бұрын
Great video!
@statquest
@statquest 3 жыл бұрын
Thanks!
@camilamiraglia8077
@camilamiraglia8077 4 жыл бұрын
Thanks for the great video! I would just like to point out that in my opinion if you are talking about log() when the base is e, it is easier (and more correct) to write ln().
@statquest
@statquest 4 жыл бұрын
In statistics, programming and machine learning, "ln()" is written "log()", so I'm just following the conventions used in the field.
@ahmedshifa
@ahmedshifa 9 ай бұрын
These videos are extremely valuable, thank you for sharing them. I feel that they really help to illuminate the material. Quick question though: where do you get the different probabilities, like for popcorn, soda pop, and candy? How do we calculate those in this context? Do you use the soda a person drinks and divide it by the total soda, and same with popcorn, and candy?
@statquest
@statquest 9 ай бұрын
What time point are you asking about (in minutes and seconds). The only probabilities we use in this video are if someone loves or doesn't love troll 2. Everything else is a likelihood, which is just a y-axis coordinate.
@sejongchun8350
@sejongchun8350 4 жыл бұрын
Troll 2 is an awesome classic, and should not be up for debate. =)
@statquest
@statquest 4 жыл бұрын
Ha! :)
@mohammadelghandour1614
@mohammadelghandour1614 2 жыл бұрын
Great work ! In 8:11 How can we use cross validation with Gaussian Naive Bayes? I have watched the Cross validation video but I still can't figure out how to employ cross validation to know that candy can make the best classification.
@statquest
@statquest 2 жыл бұрын
to apply cross validation, we divide the training data into different groups - then we use all of the groups, minus 1, to create a gaussian naive bayes model. Then we use that model to make predictions based on the last group. Then we repeat, each time using a different group to test the model.
@johnel4005
@johnel4005 3 жыл бұрын
BAM! Someone is going to pass the exam this semester .
@statquest
@statquest 3 жыл бұрын
Hooray!
@initdialog
@initdialog 4 жыл бұрын
Finally worked up to the Gaussian Naive Bayes. BAM! "If you are not familiar with ..." :(
@anitapallenberg690
@anitapallenberg690 4 жыл бұрын
You can do it! :) StatQuest made me lose my anxiety for statistics. It's truly brilliant, just start with the next video!
@statquest
@statquest 4 жыл бұрын
BAM! :)
@konstantinlevin8651
@konstantinlevin8651 Жыл бұрын
I'm a simple man, I watch statquests in the nights, leave a like and go chat about it with chatgpt.That's it.
@statquest
@statquest Жыл бұрын
bam! :)
@nzsvus
@nzsvus 4 жыл бұрын
BAM! thanks, Josh! It would be amazing if you can make a StatQuest concerning A/B testing :)
@statquest
@statquest 4 жыл бұрын
It's on the to-do list. :)
@YesEnjoy55
@YesEnjoy55 Жыл бұрын
Great so much Thanks!
@statquest
@statquest Жыл бұрын
You're welcome!
@rrrprogram8667
@rrrprogram8667 4 жыл бұрын
Thanks for the awesome video..
@statquest
@statquest 4 жыл бұрын
You bet!
@r0cketRacoon
@r0cketRacoon 5 ай бұрын
A really comprehensive video. Thank you! Sir, I have some questions about the conditions when applying this algo: 1. Is it compulsory that all features contain continuous value? 2. What happens if a feature doesn't have gaussian distribution? Is it worth to apply this algo? 3. If that, I will find a function that makes that feature have gaussian distribution. Can it work? And also, Do u plan to do a video about Bernoulli Naive Bayes?
@statquest
@statquest 5 ай бұрын
1. No - you can mix things up. I illustrate this in my book. 2. You can use other distributions 3. No need, just use the other distribution. 4. Not in the short term.
@deepshikhaagarwal4125
@deepshikhaagarwal4125 Жыл бұрын
Thank you josh your videos are amazing! HoW to buy study guides from statquest
@statquest
@statquest Жыл бұрын
See: statquest.gumroad.com/
@iamkrishn
@iamkrishn 3 жыл бұрын
This intro is my favorite idk why! :)
@statquest
@statquest 3 жыл бұрын
BAM! :)
@introvert0731
@introvert0731 Жыл бұрын
how is likellihood calculated in 4:17 can you please clear
@statquest
@statquest Жыл бұрын
Likelihood is the y-axis coordinate associated with a specific x-axis value. So, in this case, I plugged the x-axis value in to the equation for a normal distribution with the mean set to 24 and the standard deviation set to 4. I then did the math (well, to be honest, I got a computer to do the math) and got the y-axis coordinate.
@콘충이
@콘충이 4 жыл бұрын
Can you talk about Kernel estimation in the future?? Bam!
@statquest
@statquest 4 жыл бұрын
I will consider it.
@xmartazi
@xmartazi 6 ай бұрын
I love you bro !
@statquest
@statquest 6 ай бұрын
Thanks!
@sumanbindu2678
@sumanbindu2678 3 жыл бұрын
Amazing videos. The beep boop sound reminds me of squid games
@statquest
@statquest 3 жыл бұрын
Maybe they got the sound from my video! :)
@ravirajshinde465
@ravirajshinde465 3 жыл бұрын
can you please tell me the difference of likelihood prob and normal Gaussian pdf (prob), as we know we cannot find the value at a single point in Gaussian distribution , but here we are taking that
@ravirajshinde465
@ravirajshinde465 3 жыл бұрын
i got your different video and also the answer to my question kzbin.info/www/bejne/porbf4aLebh5fpY
@statquest
@statquest 3 жыл бұрын
bam
@aicancode5676
@aicancode5676 4 жыл бұрын
I dont even know why there is people disliking this video!!
@statquest
@statquest 4 жыл бұрын
It's always a mystery. :)
@piyushdadgal
@piyushdadgal 3 жыл бұрын
Thanku bam🔥🔥
@statquest
@statquest 3 жыл бұрын
:)
@linianhe
@linianhe Жыл бұрын
dude you are awesome
@statquest
@statquest Жыл бұрын
Thank you!
@taetaereporter
@taetaereporter Жыл бұрын
thank you for ur service T.T
@dipinpaul5894
@dipinpaul5894 4 жыл бұрын
Excellent explanation. Any NLP series coming up ? Struggling to find good resources.
@statquest
@statquest 4 жыл бұрын
I'm working on Neural Networks right now.
@ragulshan6490
@ragulshan6490 4 жыл бұрын
@@statquest it's going to be BAM!!
@Geza_Molnar_
@Geza_Molnar_ 4 жыл бұрын
Hi - another great explanation! I wonder what would be the result if you normalise the probabilies of the 3 values. - Would it affect the outcome of the example in this video? - Which areas of values are affected: different outcomes with non-normalised and normalised distributions (=probability or likelihood here)?
@statquest
@statquest 4 жыл бұрын
Interesting questions! You should try it out and see what you get.
@Geza_Molnar_
@Geza_Molnar_ 4 жыл бұрын
@@statquest Hi, that only make sense with real data. Without that, only juggling with equations and abstract parameters, the thing is not enough 'visual', IMO. Though, could run through the calculations with e.g. 2x scale, 10x scale and 100x scale... Maybe, when I have free few hours.
@kirilblazevski8329
@kirilblazevski8329 2 жыл бұрын
Since the likelihood can be greater than 1, doesn't that mean that we could get probability that is greater than 1?
@statquest
@statquest 2 жыл бұрын
No, probability is the area under the curve and those are defined such that the total area under the curve is always 1. For details, see: kzbin.info/www/bejne/porbf4aLebh5fpY
@kirilblazevski8329
@kirilblazevski8329 2 жыл бұрын
@@statquest Dear Dr. Starmer, Thank you for your reply. I have another follow-up question regarding the calculation of probabilities for continuous random variables (i.e. what this video is about). From my understanding, when we have discrete random variables, the probability of a given outcome P(Y=y|X1,X2,..Xn) is proportional to the product of the probabilities of the individual variables given the outcome, times the prior probability (assuming conditional independence). i.e. P(Y=y) * the product of P(Xi=xi | Y=y) This makes sense to me, because the result is a probability value between 0 and 1. However, in the case of continuous random variables, the probability of a given outcome is zero, so we instead calculate the likelihood of the outcome. This means that the product of the individual likelihoods is no longer a probability value between 0 and 1. Is this correct? What I mean is: P(Y=y) * the product of L(Xi=xi | Y=y) is not guaranteed to be a value between 0 and 1. Thank you for your expertise and for being such a valuable educator. 💖
@statquest
@statquest 2 жыл бұрын
@@kirilblazevski8329 That's correct, with the continuous version, we do not end up with probabilities. However, if you saw my video on the discrete version of Naive Bayes ( kzbin.info/www/bejne/hWOvY4isbtWXeqM ) you'll notice that I call the results "scores" instead of probabilities. The reason for this is that in both cases (discrete and continuous), to get the correct probabilities for the results, you need to divide the results (what I call "scores") by the sum of the scores for the two possibilities. By doing this, you normalize the scores for the two possibilities so that they will add up to 1.
@kirilblazevski8329
@kirilblazevski8329 2 жыл бұрын
@@statquest Now I understand what I was missing. Thank you for clarifying, I really appreciate it!!
@franssjostrom719
@franssjostrom719 3 жыл бұрын
Tough being a ML teacher these days with you around
@statquest
@statquest 3 жыл бұрын
bam!
@santoshbala9690
@santoshbala9690 4 жыл бұрын
Hi Josh.. Thank you very much for your tutorial video. I am a big fan sir I have a clarification. The P(Love Troll) or P (No love Troll) given the 3 variables - here in this example - we multiply the Prior Probability of the class with the likelihood of the variables given the class ... However as per Bayes's Theorem, it is also divided by the probability (or likelihood) of the variables... which is not done in this tutorial, same with the Naive Bayes "clearly explained" tutorial... I am sorry if have asked something "naive" :)
@statquest
@statquest 4 жыл бұрын
You have hit on one of the reasons I do not mention bayes' theorem in either of these videos. These methods are called "naive bayes", but they only use the numerator of that equation, because calculating the denominator would be hard to do. That said, the denominator would be the same for both classes, so it scales all "scores" by the same amount. And since we are only interested in the highest relative score, we can omit the denominator and still get the job done.
@santoshbala9690
@santoshbala9690 4 жыл бұрын
@@statquest Thank You very much for the clarification
@samuelbmartins
@samuelbmartins 3 жыл бұрын
Josh, a question about the formulation of Bayes' Theorem, especially considering the likelihood. For Naive Bayes, the formula is: P(class | X) = P(class) * P(X | class), in which the last term. is the likelihood In your video, you represented the likelihood as L, so that, apparently, the formula would be: P(No Love | X) = P(No Love) * L(X | No Love) (1) Is my assumption correct? Is it just a change of letters to mean the same thing? (2) Or is there any other math under the hoods? For example, something like: P(X | class) = L(No Love | X) Thanks in advance.
@statquest
@statquest 3 жыл бұрын
When I use the notation "L(something)" for "likelihood", I mean that we want the corresponding y-axis coordinate for that something. However, not everyone uses that notation. Some put p(something) and you have to figure out from the context whether or not they are talking about a likelihood (y-axis coordinate) or, potentially, a probability (since "p" often refers to "probability"). So, if you use my notation, then you are correct, you get: P(No Love | X) = P(No Love) * L(X | No Love)
@shailukonda
@shailukonda 4 жыл бұрын
Could you please make a video on Time Series Analysis (Arima model)?
@statquest
@statquest 4 жыл бұрын
One day I'll do that.
@unfinishedsentenc9864
@unfinishedsentenc9864 3 жыл бұрын
Can we use logistic regression too to predict if a person loves the movie or not?
@statquest
@statquest 3 жыл бұрын
Yes
@kartikmalladi1918
@kartikmalladi1918 Жыл бұрын
I've seen the cross validation video and the main thing that it does is consider diff training set and test model in a data set. In this video, are you trying to say cross validation helps for the accurate prediction and percentage contribution/coefficients give the decisive main important factor as candy? Thanks
@statquest
@statquest Жыл бұрын
Cross validation can be used for all sorts of comparisons.
@MrElliptific
@MrElliptific 4 жыл бұрын
Thanks for this super clear explanation. Why would we prefer this method for classification over a gradient boosting algorithm? When we have too few samples?
@statquest
@statquest 4 жыл бұрын
With relatively small datasets it's simple and fast and super lightweight.
How to Prune Regression Trees, Clearly Explained!!!
16:15
StatQuest with Josh Starmer
Рет қаралды 240 М.
Naive Bayes, Clearly Explained!!!
15:12
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
But what is the Central Limit Theorem?
31:15
3Blue1Brown
Рет қаралды 3,7 МЛН
Bayes' Theorem, Clearly Explained!!!!
14:00
StatQuest with Josh Starmer
Рет қаралды 394 М.
Multivariate Normal (Gaussian) Distribution Explained
7:08
DataMListic
Рет қаралды 42 М.
The Key Equation Behind Probability
26:24
Artem Kirsanov
Рет қаралды 162 М.
The Chain Rule
18:24
StatQuest with Josh Starmer
Рет қаралды 282 М.
StatQuest: Principal Component Analysis (PCA), Step-by-Step
21:58
StatQuest with Josh Starmer
Рет қаралды 3 МЛН
Decision and Classification Trees, Clearly Explained!!!
18:08
StatQuest with Josh Starmer
Рет қаралды 836 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
Naive Bayes classifier: A friendly approach
20:29
Serrano.Academy
Рет қаралды 147 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН