GEE Tutorial #33 - Performing Accuracy Assessment for Image Classification (Random Forest)

  Рет қаралды 6,535

Open Geospatial Solutions

Open Geospatial Solutions

Күн бұрын

Пікірлер: 14
@jhonericauntaduarte4072
@jhonericauntaduarte4072 Жыл бұрын
very usefull professor Wu. I would like to ask you, How can I do a similar process but with an external source of points as reference for accuraccy assessment?
@ruangbhumi
@ruangbhumi 4 жыл бұрын
I got confused about accuracy assessment and validation. What is the difference? do we need to do both? usually, I just do the accuracy assessment with different points that I use for classification. Hope you could explain about it. Anyway thank you for your great tutorials, I learn a lot from it.
@dannypan4143
@dannypan4143 4 жыл бұрын
Very useful! Please keep going.
@sedgeleyp
@sedgeleyp 2 жыл бұрын
What is the significance behind calculating the two matrices (train accuracy and validation)? what are the comparison criteria?
@erickabuchanga6759
@erickabuchanga6759 4 жыл бұрын
Very informative
@asrafulalam4699
@asrafulalam4699 4 жыл бұрын
Very very useful sir. I want to know how the random forest model apply in suspended sediment concentration measurements ?
@ritikaprasai5118
@ritikaprasai5118 4 жыл бұрын
Upto what sized raster we can train and extract by supervised algorithms on gge? I tried to train 9 GB, but it gives the error.
@giswqs
@giswqs 4 жыл бұрын
What error? See developers.google.com/earth-engine/guides/classification
@ritikaprasai5118
@ritikaprasai5118 4 жыл бұрын
@@giswqs I am trying to use the boundary (rectangle) geometry to extract the study area and then train the area which is approximately 9 GB in local computer. I could not upload that in my GGE account-it gives me the error so I used its extent to select the same area from the map and then train it. But it only selects a smaller part/chip of it and train the area. When I download the raster- it is only around 178 KB. I kept scale to 1 as I am using NAIP imagery.( I also tried using 17 scale) Would really appreciate your guidance on it. Thank you!
@giswqs
@giswqs 4 жыл бұрын
@@ritikaprasai5118 How did you select NAIP imagery? See developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
@ritikaprasai5118
@ritikaprasai5118 4 жыл бұрын
@@giswqs Syntax: region = ee.Geometry.Rectangle([-85.46293227354874, 30.522437102328066,-84.1487070857995 ,30.08361801814346 ]) dataset = ee.ImageCollection('USDA/NAIP/DOQQ').filter(ee.Filter.date('2017-01-01', '2018-12-31')).filterBounds(region).first() 1. Select training samples:- points = nlcd.sample(**{ 'region': dataset.geometry(), 'scale': 17, 'numPixels': 100000, 'seed': 0, 'geometries': True # Set this to False to ignore geometries }) Map.addLayer(points, {}, 'training', False) 2. Split the sample:- label = 'landcover' # Overlay the points on the imagery to get training. sample = dataset.select(bands).sampleRegions(**{ 'collection': points, 'properties': [label], 'scale': 17 }) # Adds a column of deterministic pseudorandom numbers. sample = sample.randomColumn() split = 0.7 training = sample.filter(ee.Filter.lt('random', split)) validation = sample.filter(ee.Filter.gte('random', split)) 3. Classifier:- classifier = ee.Classifier.smileRandomForest(10).train(training, label, bands) Export the result:- import os out_dir = os.path.join(os.path.expanduser('~'), 'Downloads') out_file = os.path.join(out_dir, 'landcoverfinalfinalforNAIP.tif') geemap.ee_export_image_to_drive(landcover, description='landcover', folder='export', scale=1) These are the major syntax used for the classification. Can we export the result around 9 GB directly to our local computer without having to store in google drive? I tried that also but did not help.
@aminabdo9760
@aminabdo9760 4 жыл бұрын
Great one as usual from my Sifu. Please prof. For better accuracy do you recommend training pixels with points or polygons. Thanks
@satriobudi6090
@satriobudi6090 4 жыл бұрын
can you project another country
@giswqs
@giswqs 4 жыл бұрын
Yes, you can.
GEE Tutorial #31 - Machine Learning with Earth Engine - Unsupervised Classification
22:38
GEE Tutorial #46 - How to use locally trained machine learning models with Earth Engine
23:16
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 208 МЛН
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Disrespect or Respect 💔❤️
00:27
Thiago Productions
Рет қаралды 38 МЛН
GEE Tutorial #26 - How to create and deploy Earth Engine Apps using Python?
21:52
Open Geospatial Solutions
Рет қаралды 6 М.
Lecture 49: Accuracy Assessment of Classification
32:10
IIT Roorkee July 2018
Рет қаралды 2,5 М.
GEE Tutorial #19 - How to search and import datasets from Earth Engine Data Catalog
15:01