I watched this talk for the first time around when it was delivered, when I was first properly getting into FP. Even given that, I've watched it at least three times in the past three months. It's just so fun.
@enricobuonanno8 жыл бұрын
What a great talk!
@MyAce84 жыл бұрын
really concise, and really funny. Definitely keeping this to teach people about the more exotic type classes
@KeithSalisbury7 жыл бұрын
Such a good talk, and so nicely delivered thanks George!
@EvanMildenberger20 күн бұрын
10:00 This all makes me think about tensors and the ability to talk about covariance and contravariance at the same time explicitly: for example, a vector is a (1,0)-tensor, a covector/linear form is a (0,1)-tensor, a linear vector space map is a (1,1)-tensor, etc. It seems that (co-)functors are either fully covariant or contravariant but never mixed. What would be a category theory / type theory / functional programming equivalent of a mixed tensor which could have some number of covariant and contravariant pieces? Edit: It seems he explained something like a (1,1)-tensor from abstract algebra as a Profunctor in that it takes 1 contravariant input type and gives 1 covariant output type. But I'm wondering about the terminology that generalizes (p,q) tensors so that you could talk about something that takes 42 contra- input types and gives 314 covariant output types.
@dustin20541 Жыл бұрын
Great video. Please keep making more of them George.
@Bratjuuc3 жыл бұрын
i'm really glad I stumbled upon this talk. Thanks
@jsoo17 жыл бұрын
You clicked some lights on for me! Thanks!
@TheMcallist14 жыл бұрын
Brilliant talk. Thanks George
@daweiofficial5367 жыл бұрын
This guy is precious! The best teacher out there! I love you man!
@WarrenLeggatt3 жыл бұрын
Great talk and props for the King Chrimson shirt :)
@mortenbrodersen86645 жыл бұрын
Great talk!
@christophealexandre15387 жыл бұрын
Brilliant!
@thibremy7 жыл бұрын
Really nice ! Great job :)
@StudentOfKyoto3 жыл бұрын
Amazing talk
@АнимусАнанимус4 жыл бұрын
He were explained some complicated thnigs pretty simple! Very good talk! :)
@kahnfatman Жыл бұрын
Is Maybe a special case of Either Nothing?
@DougBeardsley Жыл бұрын
Maybe is equivalent to Either ()
@StanShoebin6 жыл бұрын
he my brother, really he is.
@nilp0inter23 жыл бұрын
you have a very cool brother, congrats
@ShaeErisson7 жыл бұрын
Wow, I thought profunctors would be scary, but they're not.