This is valuable knowledge, thank you for sharing. I like that Qdrant is written in Rust as well!
@sriramananthakrishnan138 Жыл бұрын
This is an excellent tutorial ! Just one suggestion, can you please, the next time, use the words from the payload to create the embeddings for the vectors and then pad it as well to create vectors of n=100 dimensions and then show the same example. It will help people like me understand easy to use next steps to embed complete documents.
@fabsync Жыл бұрын
Love your teaching style! One question.. if I have millions of data points and I want to create and save some query results.. so that I can show my clients something while I am creating/retrieving the new data query results…how would you go about doing that ? Would you do that with Qdrant only or will you combine it with another db?
@greendsnow Жыл бұрын
More human way of adding your vectors is like this: points = [] for i in range(len(vectors)) point = models.PointStruct( id=1, vector={ "image": [0.9, 0.1, 0.1, 0.2], "text": [0.4, 0.7, 0.1, 0.8, 0.1, 0.1, 0.9, 0.2], }, ), points.append(point) client.upsert( collection_name="{collection_name}", points=points )
@BuiHungHoward6 ай бұрын
could you update for method qdrant client -> method recommend -> argument: query_vector seem be changed?
@Tripp1119 ай бұрын
Hell yeah. Demos from the bathroom!
@code_guy5067Ай бұрын
i was amazing with your speaking speed lol
@rodrigomaldonado528011 ай бұрын
Thank you very useful!
@JakubSK Жыл бұрын
Dash not underscore
@LouiseBelle-e7b2 ай бұрын
Rudolph Extension
@TonyAbner-j2qАй бұрын
Buckridge Oval
@BartonBaird-l2mАй бұрын
Hackett Manors
@sierrabrowneda3822Ай бұрын
Sheridan Cliff
@ConnieJudith-e4mАй бұрын
Maxine Forest
@RiponSorkere-f2rАй бұрын
Rodrick Plaza
@DewarLucy-d2wАй бұрын
Predovic Forge
@EliotValentine-e7h2 ай бұрын
Lenna Throughway
@RebeccaHoag-z4k2 ай бұрын
Ullrich Lane
@GalsworthyVita-i5pАй бұрын
Jenkins Way
@MichaelSara-h2z2 ай бұрын
Bode Prairie
@MicheleFigueroa-w3q2 ай бұрын
Mariane Mountain
@EldaAkles-m5i2 ай бұрын
O'Reilly Ports
@BensonAgnes-n4lАй бұрын
Monserrat Spur
@BrendaSorrell-x8b2 ай бұрын
Sally Plaza
@RonnyOwensby-d9s2 ай бұрын
Reynolds Drive
@RegineShefte-y9l2 ай бұрын
Trever Burgs
@ThomsonGustave-i9zАй бұрын
Seth Ford
@AgnesVivien-g5h2 ай бұрын
Christop Lake
@MaudNick-b5y2 ай бұрын
Mateo Cliff
@SonmerfieldRobin-t7r2 ай бұрын
Beahan Meadow
@savire.ergheiz2 ай бұрын
The dev don't care about his own channel 😂 Those are random numbers you can't really says that livin lavida loca is trully related with that australian song. At least next time use some embedding data so that it will makes more sense 😅 Using random data for a product demo intended for production is just simply lazy.
@BriceKoterba-r6j2 ай бұрын
Kyra River
@PamelaHelm-u8b2 ай бұрын
Leif Heights
@WildPeter-x2h2 ай бұрын
Helene Shoal
@SadieByrd-b3o2 ай бұрын
Sven Cape
@MatthewTownsend-s8z2 ай бұрын
Mohamed Plains
@DawneJosselyn-e3g2 ай бұрын
Bailee Ramp
@PhuongLary-r6t2 ай бұрын
Beahan Mall
@KelsenMaltz-w7l2 ай бұрын
Yundt Course
@IgnaciaLunde-v7yАй бұрын
Jerde Path
@darogajee3286 Жыл бұрын
very compliicated tutorial ever from 1:00 time you are writitng everything in docker
@yash_renaissance_athlete4 ай бұрын
actually, the tutorial couldn't have been simpler. It was very well put together.
@연찐두빵 Жыл бұрын
from qdrant_client import QdrantClient from qdrant_client.http import models client.upsert( collection_name="point_example", points=models.Batch( ids=[1, 2, 3], vectors=[ [0.9, 0.1, 0.1,0.5,0.6], [0.1, 0.9, 0.1,0.2,0.4], [0.1, 0.1, 0.9,0.5,0.2], ] ), ) After run this code, collection_name = "insert_for_point_examle" vector_id = 3 # 특정 ID의 벡터 조회 client.retrieve( collection_name=collection_name, ids=[1], with_vectors = True ) i checked my data id=1, but result is [Record(id=1, payload={}, vector=[0.9878784, 0.10976427, 0.10976427])] Why not [0.9, 0.1, 0.1,0.5,0.6]..?