There's another problem like this one with an interesting solution, where you want to build a fence of the greatest area and smallest perimeter, but using a lake as one of the sides.
@adrianyaguar76662 жыл бұрын
Yes :) it will be rectangle with sides x and 2x, not a square :)
@GirishManjunathMusic2 жыл бұрын
Before watching the video: xy = 1000 square units x = 1000y↑(-1) Minimise perimeter = 2(x + y): Differentiating 2(1000y↑(-1) + y) 2(1 - 1000/y²) = 2(1 + 10√10/y)(1 - 10√10/y) Setting equal to zero to find critical numbers: 1 + 10√10/y = 0 or 1 - 10√10y = 0 As this is a geometric problem, y cannot be negative, so we will go with option 2: 1 = 10√10/y → y = 10√10 units x = 1000/y, which makes x also 10√10 units. The perimeter is therefore minimised at 2(x + y) = 40√10 units.
@opfis68822 жыл бұрын
3:57 Y has to be equal to 1/1000
@aleelopee_2 жыл бұрын
Doing this with a triangle instead of a rectangle should be an interesting problem!
@Toninhophi192 жыл бұрын
Wow, I love it
@kaiudall25832 жыл бұрын
So to minimize the perimeter of a rectangle given an area, it will be a square. Very cool
@littleretroship64032 жыл бұрын
Ok so here we go I’m starting to love optimization problems. xy=1000 y=1000/x A(x)= 2x + 2000/x A(x)= 2x + 2000x^(-1) A’(x)= 2 - 2000x^(-2) Set A’ to 0 0= 2 - 2000x^(-2) -2=-2000x^(-2) 2=2000x^(-2) 1/1000=1/x^2 1000=x^2 x=sqrt(1000) Perimeter is: 4*sqrt(1000) Oops mistake again
@PLAYWORD2 жыл бұрын
I liked it, but I didn't understand anything hahaha