Gradient Descent Explained

  Рет қаралды 87,667

IBM Technology

IBM Technology

Күн бұрын

Пікірлер: 38
@EmmanuelOdii80
@EmmanuelOdii80 14 күн бұрын
Someone please give this man a medal.
@saisrikaranpulluri1472
@saisrikaranpulluri1472 Ай бұрын
I was here for convergence and learning rate of gradient decent. Incredible, Your way of explaining is understandable and pace is making concepts easy to grasp. Most importantly the simple examples for the explanation is the highlight and loved it.
@donaldpersaud8901
@donaldpersaud8901 Күн бұрын
It’s a great video. Loved the humorous ending
@Msyoutube38
@Msyoutube38 2 жыл бұрын
Very nice explanation of the concept, brief and understandable. Awesome!
@vt1454
@vt1454 2 жыл бұрын
As always, great video from IBM
@John-wx3zn
@John-wx3zn 10 ай бұрын
It is wrong.
@shivanshpachauri2855
@shivanshpachauri2855 Ай бұрын
@@John-wx3zn how?
@krishnakeshav23
@krishnakeshav23 Жыл бұрын
Good explanation. It is somewhat also important to note that curve should be differentiable.
@Akanniafelumo
@Akanniafelumo 3 ай бұрын
The best explanation I have had ever, in fact till now
@handsanitizer2457
@handsanitizer2457 Жыл бұрын
Wow best explanation ever 👏
@Adnanuni
@Adnanuni 4 ай бұрын
Thank you for such an amazing explaination Martin. Thanks a lot team IBM
@cyrcesarkore
@cyrcesarkore 4 ай бұрын
Very simple and clear explanation. Thank you!
@krissatish87
@krissatish87 11 ай бұрын
The best video i could find. Thank you.
@davidrempel433
@davidrempel433 Жыл бұрын
The most confusing part of this video is how he managed to write everything backwards on the glass so flawlessly
@sanataeeb969
@sanataeeb969 Жыл бұрын
can't they write on their normal side then flip the video?
@sirpsychosexy
@sirpsychosexy Жыл бұрын
@@sanataeeb969 no that would be way too easy
@waliyudin86
@waliyudin86 Жыл бұрын
Bro just focus on the gradient descent topic
@P4INKiller
@P4INKiller Жыл бұрын
@@sanataeeb969Oh shit, you're clever.
@smritibasnet9782
@smritibasnet9782 5 ай бұрын
Nope he isnt writing backward..you can observe he seems to be using left hand to write ,but in actual right hand was being used
@hugaexpl0it
@hugaexpl0it Жыл бұрын
Very good explanation of high-level concept on GD.
@Shrimant-ub4ul
@Shrimant-ub4ul 8 ай бұрын
Thank You Martin , really helpful for my uni exam
@57-tycm-ii-karanshardul28
@57-tycm-ii-karanshardul28 2 ай бұрын
Thankyou sir.
@s.m.rakibhasan5525
@s.m.rakibhasan5525 Жыл бұрын
great lecture
@nurudeenmohammediyam9221
@nurudeenmohammediyam9221 Ай бұрын
whats the difference between entropy and cost function
@shivanshpachauri2855
@shivanshpachauri2855 Ай бұрын
Entropy measures the impurity of a function while cost function is to measure how far off a model's prediction are from the true values
@FaberLSH
@FaberLSH 7 ай бұрын
Thank you so much!
@sotirismoschos775
@sotirismoschos775 2 жыл бұрын
didn't know Steve Kerr works at IBM
@harshsonar9346
@harshsonar9346 Жыл бұрын
Im always confused by these screens or boards, whatever. Like how do you write on them? Do you have to write backwards or do you write normally and it kinda mirrors it?
@_alekss
@_alekss 2 жыл бұрын
Nice I learned more from this 7 min video than 1 hour long boring lecture
@SAZlearn_AI
@SAZlearn_AI 4 ай бұрын
Let me clarify the concept of learning rate and step size in gradient descent: Learning rate: The learning rate is a hyperparameter that we set before starting the optimization process. It's a fixed value that determines how large our steps will be in general. Step size: The actual size of each step is determined by both the learning rate and the gradient at that point. Specifically: step_size = learning_rate * magnitude_of_gradient So: The learning rate itself is not the size of the steps from point to point. The learning rate is a constant that helps determine how big those steps will be. The actual size of each step can vary, even with a constant learning rate, because it also depends on the gradient at each point. To visualize this: In steep areas of the loss function (large gradient), the steps will be larger. In flatter areas (small gradient), the steps will be smaller. The learning rate acts as a general "scaling factor" for all these steps.
@velo1337
@velo1337 2 жыл бұрын
ibm: "how to make a neural network for the stock market?"
@Justme-dk7vm
@Justme-dk7vm 10 ай бұрын
ANY CHANCE TO GIVE 1000 LIKES???😩
@John-wx3zn
@John-wx3zn 10 ай бұрын
Your neural network is wrong.
@slimeminem7402
@slimeminem7402 5 ай бұрын
Yeah the neurons are not fully connected 1:43
@Rajivrocks-Ltd.
@Rajivrocks-Ltd. Жыл бұрын
I was expecting a mathematical explanation :(
@abdulhamidabdullahimagama9334
@abdulhamidabdullahimagama9334 2 жыл бұрын
I couldn't visualise, I saw nothing on the screen...
@yt-sh
@yt-sh 2 жыл бұрын
can see it
@Theodorus5
@Theodorus5 6 ай бұрын
Too many words
Gradient Descent, Step-by-Step
23:54
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
Machine Learning vs Deep Learning
7:50
IBM Technology
Рет қаралды 761 М.
Мем про дорожку
00:38
Max Maximov
Рет қаралды 4,5 МЛН
100km/h Reflex Challenge 😱🚀
00:27
Celine Dept
Рет қаралды 156 МЛН
1%🪫vs 100%🔋
00:36
Аришнев
Рет қаралды 3,3 МЛН
What is LSTM (Long Short Term Memory)?
8:19
IBM Technology
Рет қаралды 245 М.
Intro to Gradient Descent || Optimizing High-Dimensional Equations
11:04
Dr. Trefor Bazett
Рет қаралды 82 М.
22. Gradient Descent: Downhill to a Minimum
52:44
MIT OpenCourseWare
Рет қаралды 84 М.
Regularization in a Neural Network | Dealing with overfitting
11:40
Gradient descent, how neural networks learn | DL2
20:33
3Blue1Brown
Рет қаралды 7 МЛН
Deep Dive into LLMs like ChatGPT
3:31:24
Andrej Karpathy
Рет қаралды 638 М.
What is Back Propagation
8:00
IBM Technology
Рет қаралды 86 М.
What is DeepSeek? AI Model Basics Explained
10:22
IBM Technology
Рет қаралды 101 М.