That: "Stay creative, and I will see you next time!" goes crazier every time. I love it!
@greatscottlab3 жыл бұрын
😁
@jojo-fp1zv3 жыл бұрын
Haha yeah
@1DR31N2 жыл бұрын
Keep it, otherwise I'm gonna miss it.
@my69142 жыл бұрын
so am i
@Jameswen-electronics6 ай бұрын
@@greatscottlabwhy jlcpcb needs $6 to ship and a pcb costs $2
@dannycoria19953 жыл бұрын
Really interesting project. I am doing a PhD on power electronics and I have previously studied how to improve buck converters. There is a topology called "active clamp ZVS buck Converter" that besides using synchronous rectification with mosfets allows to have ZVS in the switching of the mosfets, which greatly reduces the switching losses. In addition, due to its behavior, it allows placing several modules in parallel to increase the total power without additional control, since it distributes the current automatically.
@paugasolina50483 жыл бұрын
noone cares no lifer
@taton53 жыл бұрын
Electronics aren’t real dude
@nickdaves34673 жыл бұрын
that's awesome! Would be great to read the research you write about this.
@sabrysm3 жыл бұрын
Interesting
@bryanakers93543 жыл бұрын
@@paugasolina5048 its funny you call someone a no lifer when you are on this thread chugging haterade. Must just be self reflecting or something. At least his post relates to the video.
@markday31453 жыл бұрын
FYI, many STM32 MCUs have a PWM mode with complimentary outputs and dead state insertion -- specifically for switched mode power supplies and brushless DC motors. I didn't really understand the connection until watching this video. Thanks!
@batugunduz39503 жыл бұрын
Ooooh makes a lot of sense! I always wondered why every timer had 2 output pins
@PerchEagle3 жыл бұрын
If you and Batu Gunduz meaning the 2 output units for each timer then the ATmega328p has the same scheme.
@markday31453 жыл бұрын
@@PerchEagle If I understand correctly, the STM32 can generate the complimentary outputs using a single output compare channel (the 328P seems to need two, with the same compare value, but opposite output polarity). Also, the STM32 can insert dead time (neither output enabled) automatically. I think the 328P would need two timers with different TOP/BOTTOM values (or just different initial counter values?) to produce dead time.
@PerchEagle3 жыл бұрын
@@markday3145 ok, let me check the stm32 datasheet for this point.
@felipeyoshino69512 жыл бұрын
Yes, you do. For example, the STM32G474RE available on evaluation kits has a peripheral called HRTIM. A timer capable of generate a pwm with 4GHz clock. It has multiple outputs and features that makes a synchronous buck converter easy to implement. There's also some APIs sponsored by a ST's partner called BIRICHA with professional tools used for design a 2p2z digital controller using this peripheral. Yes, z transforms and transfer functions simulated and measured all in the ecosystem. Have fun.
@juhasaario54462 жыл бұрын
Your calming tone and drawing prowess is Bob Ross lvl. And that is rare.
@omniyambot98763 жыл бұрын
Great scott, sir. I know it's less likely that you read this. But I love how much clearer you explain everything steps/components now. When I was first year hs, I can't understand a thing in your videos, it's full of maths and very fast. It's just great to look at but nothing to learn from. Only your same level could understand. But since they are your same level, they couldn't also learn anything. Now that I'm getting college that I understand those videos, but still they are very fast and unclear functions of components. Now you are very much more interactive. Much more clear in explaination. And much longer videos but still direct and great written videos. I actually learn many things now. Thank you so much!
@farizfadillah75573 жыл бұрын
Sounds like How your GPUs/VGAs' Chipset and VRAM module voltage are supplied. A mosfet driver, Low and High Side Mosfets, A Capacitor, and an inductor/Coil. Interesting!
@BRUXXUS3 жыл бұрын
Oh, you're right!
@farizfadillah75573 жыл бұрын
@@maxhouseman3129 yeah, i saw modern GPUs like 20 series use some kind integrated mosfet-driver because tons of Vcore phases they use and they don't use much space like older GPUs.
@alouisschafer72123 жыл бұрын
Yeh most efficient way to convert power. There are powerstages that reach like 95% efficiency under normal operation.
@alouisschafer72123 жыл бұрын
@@farizfadillah7557 they call those powerstages. Crazy beefy chips. One of them can easily suppy 20-30 amps without overheating and the high end ones rated for very high currents can push 50 amps. If a GPU pulls 300W at roughly 1V you have 300 amps going trough the VRM. The VRMs on modern GPUs are really the most advanced dc to dc converters out there. They convert 12V to something as low as a single volt while retaining 90+ percent efficient and delivering a few hundred watts.
@hakimyusuf53703 жыл бұрын
I will say this too. But you already say it
@trishanustech2813 жыл бұрын
I dont have a more new ideas for you but I can totally say that ur are the most detailed videos I have ever seen. I keep trying to learn from ur videos.. thx for encouraging everyone.
@DanielsGameVault3 жыл бұрын
7:32....oh right, I've seen that setup before in laptop power supplies, but never really understood how they worked without a diode - this makes sense now. They're also susceptible to killing the load if the top FET shorts and sends VCC to the load directly.....
@madytinjorj3 жыл бұрын
After adding a feedback system. I hope you can go forward and talk about isolated dc to dc converters. The bridge configurations. Zvs. Zcs and phase shifted pwm are very interesting topics and I would love to see what you come up with as a real circuit because I could only get the design due to lack of a workshop of any sort. But yes please a feedback system first. You have a way of making these topics simple to understand to start out
@power-max3 жыл бұрын
Also a neat observation you might like, if you look at the generalized/abstract schematics for buck and boost converters (using switch symbols instead of practical implementations, you will see that they are in fact the same. Just the port where power input and output are flipped around. You can make a buck converter, feed the voltage into the output, and use the input of the buck converter as the output to turn it into a boost converter! This does not take into account any practical aspects of the controller or MOSFET drive but it should be possible!
@AVNGwebdev3 жыл бұрын
Your videos refreshed my 4 years of Electronic study in 2 hours. Thank you very much
@cvspvr Жыл бұрын
man, i love the drawings that you do. they're so... precise
@daveb79992 жыл бұрын
Thanks Scott! Now I'm 'very glad' I picked a 'Synchronous Converter' for supplying my 150W pure sine inverter with the correct voltage when using two of my EGO (56VDC) batteries ... Makes for a nice, small, emergency backup and camping power unit. 10AH@56V ... 560WH. 5VDC, 12VDC and 120VAC as needed.🙂 Nice job on making one!
@96Lauriz3 жыл бұрын
I love that GreatScott finally uses ferrules in his projects! Upgrade due to last video :D
@pauljackson21263 жыл бұрын
Damn that's some great efficiency numbers I saw today from a DC to Dc converters. Yesterday in my viva, I was asked what can be the efficiency of a DC to DC Buck Converter and books said about 80%. I think this can improve power draw of many project that are about portability. Great Video as always!
@greatscottlab3 жыл бұрын
Thanks mate :-)
@JjMn10003 жыл бұрын
Ok
@LightningHelix1013 жыл бұрын
Efficiency is largely a function of size, load, and conversion factor. If you can make a switching converter larger, you can use a lower loss inductor. If the load is lower than all the magnetic and conduction losses are lower, and if the conversion is a small step than the converter can act more like a wire.
@power-max3 жыл бұрын
Oh yeah these days you can quite easily build DC converters that operated well above 90%. The part that is hard is when you need to balance other design aspects such as size, cost, EMI, and if you want high efficiency at a specific operating point versus across a wide range of input and output voltage and current range.
@edwardvanravesteijn8413 жыл бұрын
Bedankt
@greatscottlab3 жыл бұрын
Danke für den Support :-)
@HouseDadLife3 жыл бұрын
In terms of electrical, you are on a whole other level, I was left in the dust.
@QuanrumPresence3 жыл бұрын
Thank you! Really love power supply projects, explains the basics very well.
@greatscottlab3 жыл бұрын
Glad it was helpful!
@power-max3 жыл бұрын
I recommend using a bootstrap IC driver for your MOSFETs, particularly where you have a high-side FET. I like the IRS2186 but the stupid thing is out of stock because of the silicon shortage. You could make your own but the tricky bit is how to control a high side driver with low-side logic. Internally these ICs might use an optocoupler (at the cost of propagation delay), others use a high voltage emitter follower (also limited in propagation and bandwidth due to miller effects). The fastest ones appear to use a transformer akin to a GDT or capacitive coupling into the inputs of a SR latch on the high side. It might make a good video topic!
@KomiyanVT3 жыл бұрын
A mechanism I'm experimenting with involves a flyback with two feedbacks... One for the switcher, one for the Ideal Diode - I mean Synchronous Switch
@alexcaceres30603 жыл бұрын
¡Gracias!
@styrishrodrigues3 жыл бұрын
Mui mal
@greatscottlab3 жыл бұрын
Thanks for the support :-)
@devenkanabar3 жыл бұрын
Thanks
@greatscottlab3 жыл бұрын
Thanks for the support :-)
@KwanLowe3 жыл бұрын
Thanks!
@greatscottlab3 жыл бұрын
Thanks for the support :-)
@aks84033 жыл бұрын
Your explanations are getting even better! I am amazed
@nithikasandinu58433 жыл бұрын
I am looking forward to learn how to add feedback system for this supper simple converter. That would be perfect. 👍
@greatscottlab3 жыл бұрын
Fingers crossed!
@juanmontes89053 жыл бұрын
I think a tl431 could be a good and cheap option, but I'm not sure if it will oscillate by itself
@LightningHelix1013 жыл бұрын
@@juanmontes8905 How would you use the reference as a controller? Yeah, if you don’t compensate the Buck it will oscillate depending on the ESR of the inductor and output capacitor.
@dedamarsovac3 жыл бұрын
I'm voting for a software-implemented feedback loop here. Much more cool. Much more hackable. Much more programmable. In fact, if he solders just another halfbridge module, he can get a complete pure sinewave DC-AC with just a software mod :D Or just a multichannel DC supply that can both charge and discharge a battery :)
@juanmontes89053 жыл бұрын
@@dedamarsovac the Rp2040 can be a good option, but you will need a independent power supply for the uc
@j--xe3ke3 жыл бұрын
Nothing special to do on a sunday evening: new video from GreatScott! ❤️
@pastahajianpour56073 жыл бұрын
I wish you talked about ground bounce too, at least a bit. It's quite an important thing when it comes to making compliant products that have switchmode converters. Great video though!
@greatscottlab3 жыл бұрын
I can put the topic on my to do list :-)
@wernerviehhauser943 жыл бұрын
@@greatscottlab Please do. Ground bounce is a real pain in the ass - especially in mixed-signal designs.
@asdfqwerasdfqwer30583 жыл бұрын
Danke!
@greatscottlab3 жыл бұрын
Danke für den Support :-)
@isobutylquinoline3 жыл бұрын
A left handed engineer is a dangerous weapon indeed! Left handed people think differently and are typically more holistic thinkers and creative types. This is a generalization of course, but left handed people tend to be more creative and not have the tendency of falling into STEM fields. So when we see a left handed engineer, it is truly something special because they bring a unique and different approach to problem solving. Again, this is a generalization but there is something to it. I have a friend who is a great programmer and who is also left handed. He always has a different and unique way of approaching problem solving that is different but also efficient and elegant. I really enjoyed this video!
@jafinch783 жыл бұрын
Awesome SMPS chart. Love the quantitative data charts with graphical (schematic) information condensed well. About all I can see is having some scope graphs to further enhance. :-) Great information and details as always, thanks for sharing!
How to increase the efficiency of most circuits 101: Replace bipolar transistor with a FET and some complicated logic that emulates the bipolar.
@rusle3 жыл бұрын
Know the strength and weakness of the different technologies and select accordingly. Easy to say but development can be quite fast so the correct answer might change. Bipolar transistors might be the best choice sometimes and got it strengths.
@Leroys_Stuff3 жыл бұрын
A bad day in electronics nothing happens a good day works as expected, an epic day the smoke comes out of Fred. Great video as always.
@jimmy_jamesjams_a_lot41713 жыл бұрын
Years ago, a very determined man by the name of Walt Jung was on the rampage to innovate a voltage regulator that could do its job and handle higher currents that’s the typical 0.8 amps that we are familiar with. He wrote some great articles and he produced some schematics that are just as valuable!! I suggest that you would be interested in playing with his designs, or else looking at them if you already haven’t. I believe you would probably take away much more meaning and valuable info than I did. Thanks for sharing again!!
@hulkgqnissanpatrol61213 жыл бұрын
I'm self taught and when I seen your soldering it just made me smile 😆😁
@yashrajshinde1085 Жыл бұрын
I am following this channel for long time but first time I saw the GreatScott!
@fransmurati23703 жыл бұрын
What I enjoyed the most, was the fact that you thought off and catered for the "new to electronics audience" thank you for it and akthough this is is a bit afvanced for me at this stage, I will definately tune back into this video.
@lohikarhu7343 жыл бұрын
Sometimes, the AC resistance of the inductor can be a tricky bit, as, at short duty cycles, the apparent frequency content of the inductor current can be high enough to cause several % loss. And, of course, PCB layout can affect performance due to parasitics that reduce switching performance ....and so on, as I'm almost sicher that you know. Nice video. BTW, the ripple frequency and amplitude when in DCM, lets you do some calculations of parasitic capacitance and ACR. "Left as a proof by the student" ;-)
@rahuljathar44303 жыл бұрын
Cheers🍷
@danieldusentrieb40823 жыл бұрын
Yea
@greatscottlab3 жыл бұрын
Those are all the fine details. Maybe one day I can get to such detailed topics :-)
@ablebaker993 жыл бұрын
About the inductor, I tried some experiments with switch mode chips, and found I could not just wing it with the inductor. I had some ferrite toroids and wound them up. The uH was good but if you have the wrong core material - not so good. So anyone attempting this sort of project, look into the recommended toroid for the circuit.
@JoelLandivar3 жыл бұрын
Dude, how can I get to know so much? Any books you would recommend on power electronics or courses?
@moonmatthew3 жыл бұрын
Nice, another video. But im still waiting for The 3d printer diy or buy :D, but keep up The great work!
@greatscottlab3 жыл бұрын
Maybe one day!
@moonmatthew3 жыл бұрын
@@greatscottlab I still hope :D
@androiduberalles3 жыл бұрын
That's easy. Diy if you want the most bang for the buck, buy if you want it to just work. Diy requires a bunch of trial and error to get everything working good. Plus, you have to be extremely comfortable with tearing a lot of stuff apart if you get a clog/jam, etc. That goes for both diy and buy though. For context, I built a modified version of the HevORT for about $600-$700. There's nothing even close to how good and fast it is if you wanted to buy something at the same price.
@moonmatthew3 жыл бұрын
@@androiduberalles thats true
@ShahZahid3 жыл бұрын
@@androiduberalles not exactly the kind of budget 3d printers u can buy theses, days totally defeat the purpose of diy-ing a budget one, but for larger or complex printers diy-ing makes a lot of sense, imo just but a decent printer like the ender 3 and then u can diy a very decent 3d printer cuz u can easily print most of the parts
@nithishwarm8803 жыл бұрын
U are the best electronics youtube i have ever seen. learnt alot , i really have an intrest in electronic components, like i open every electronic devices that are not in use and extract pcb. after i complete my high school in 5 months i am gonna do Electronics and Communication Engineering(ECE), then after than i want to build, invent, create things that can potentially change our lives ;)
@youneshamache33143 жыл бұрын
I was just about to build my synchronous buck converter, but after watching your video i think i'd have to make some adjustements like adding some decoupling capacitors and diodes to discharge mosfet's gate capacitor ! Your videos are always GREAT Scott thanks !
@youneshamache33143 жыл бұрын
Btw adding a proper heatsink will for sure increase the effeciency as it will dessipate heat off of the mosfets !
@nerdsmith_uk3 жыл бұрын
Thanks for explaining! I've done a few integrated buck conversion designs in my circuits, and I'm really only familiar with the diode type topology, that explanation opened my eyes
@greatscottlab3 жыл бұрын
Glad it was helpful!
@VladGoro253 жыл бұрын
Scott, this is one of the best videos about DC-DC converters i've seen!!! Such a good explanation with graphs and examples. I Appreciate your great work put in this video! Will be interested in next topic: efficient BOOST converters and are they possible?
@avejst3 жыл бұрын
Great video as always 👍😀 One little trick when soldering SMDs: put the required amount of tin on the pad, and 'cut it off with the solding-tip' and then drive it with solding tip to both the pad and the compont-lead. It is faster this way, and you have more control of the amount of solder on the compont/pad. And do the same on the first pad too. You can adjust the amount of tin, by cutting the length of the tin, or using a thinner tin on SMD😀 Thanks for sharing your great walkthrough of the electronic wonders of the world 👍😀
@RicardoPenders3 жыл бұрын
Very good information on the synchronous rectifier part, it helped me to understand how it works a little bit better. Thanks for sharing.
@edwardfletcher77903 жыл бұрын
You explained this so clearly that even a theory dunderhead like me understood it ! Thank you 👍
@NeedleBender7853 жыл бұрын
This is awesome timing. I am actually building this same circuit this week, except for the controller I am using a UC3843 IC and with either type II compensation network around it for current mode control. I am building this circuit primarily to test my new Picoscope 5444D and it’s frequency response analyzer tool to actually plot the bode plot and measure phase margin.
@rashidak78213 жыл бұрын
Good video bro I am from Kerala India 🇮🇳 I waiting for next video 🙏
@greatscottlab3 жыл бұрын
Thanks :-)
@nickwallette62013 жыл бұрын
Great series! I would really love to see how to implement an isolated switching converter. The magnetics can be a bit intimidating.
@sir.burbonburg700811 ай бұрын
Your older intro music is still the best, it was timeless
@AitoLaikoSamoMoaCawfy3 жыл бұрын
He really puts a lot of effort in vids
@greatscottlab3 жыл бұрын
Thank you :-)
@MrJugsstein3 жыл бұрын
Relay like you explanations and the written diagrams you do that go with them. I'm out of the mechanical space and you make this so clear Tks Will
@greatscottlab3 жыл бұрын
Glad to help
@xslr3 жыл бұрын
Great video as always. I’d love to see you explain an isolated dc-dc topology.
@bur1t03 жыл бұрын
I only recently learned this from KZbin, but your soldering exploits would be made much easier with a generous application of flux. I've been using some colophony I got on ebay from the Ukraine, works a treat and leaves my room smelling forest fresh! But seriously, the Louis Rossman school of "Would you like some solder with your flux" cannot be understated. Solder becomes so much more cooperative. There is no such thing as too much, but there is certainly not enough.
@SianaGearz3 жыл бұрын
I don't think he's having a hard time though. If you buy actually high quality solder it's got at least 2% flux in it anyway, and if you work hot and quick it easily suffices for the initial joint, easily! And it's good flux too, not just dirty tree sap. Then if you need to rework, you do add flux just then. When you do repair like Rossmann, obviously flux should pretty much flow in your veins. Germans have a funny colophony flux brand, "Löthonig". Soldering honey. Can't get over it. Don't like it though, too smokey, too much wood in it. And like why, Chinese flux is OK.
@bur1t03 жыл бұрын
@@SianaGearz if you can do the joint in less than a second, the flux core is good enough. Sometimes. This video helped me a lot kzbin.info/www/bejne/qpesqHurfN-Ie80 Doesn't matter what brand of flux you use, as you say, the cheap stuff does the job just fine. But it shouldn't have peaks of solder poking out of the joints, the surface tension should be working with you. Of course I wouldn't be surprised if he's just doing it to mess with those of us who have mentioned it before. The German sense of humor is a mighty force to be reckoned with.
@SianaGearz3 жыл бұрын
@@bur1t0 Yeah that vid is good. But i mean, if you have preheated the joint and applied solder, then you basically don't need to worry, if you trust your solder. Even if you dwell a little too long and it has drawn a whisker, as long as it's not going where it could be dangerous, it's fine, the underlying metal surfaces got fluxed and there will be a functional joint. That being said i do usually flux extra and make my joints look actually neat. But for a proof of concept garbage prototype, putting too much attention to it isn't actually all that time effective. Like you might as well leave it till after you know it works, and after you know it works, you better damn leave the thing alone, why fix what isn't broken. "A German joke is no laughing matter" - Mark Twain.
@worvtube3 жыл бұрын
I strongly suggest you to get 0.5mm tin. Your smd soldering will look much nicer and you can control the amount much more precisely.
@electronicscaos3 жыл бұрын
He's way too arrogant to accept comments on how poor is the quality of his solder joints 😆
@jlucasound3 жыл бұрын
Wow. Just Wow. The signal on your Silly Scope is fascinating! And it is not what you wanted? Oh, man! It is so colorful! BTW, Merry Christmas and Happy New Year, Everyone! One Day I will get it, Scott. With your help. Thanks!
@DoctorX172 жыл бұрын
Those purple PCBs are always so pretty
@TimmaethBoy3 жыл бұрын
Would the lower Q2 MOSFET even need to be switched on @ 6:26 ? Shouldn't current be allowed to conduct through the body diode when it's off, or is the transistor you're using not have that characteristic?
@greatscottlab3 жыл бұрын
The body diode creates more power losses than the MOSFET. You want to use it as little as possible.
@TimmaethBoy3 жыл бұрын
Thanks for clarifying, Keep up the good videos.
@LordPhobos65022 ай бұрын
The more I learn about switchmode power supplies, the more they just look like fancy motor drivers - that's clearly a half-H-bridge. Now if only I could put that knowledge to use 😁
@shirapuno20282 жыл бұрын
The terminology Synchronous Converter is misleading as it suggests a new converter type. The design shown is still a Buck converter but with synchronous rectification, which is commonly referred to as a "Synchronous Buck". Synchronous rectification, can in concept, be applied to any use of a diode. Its commonly done on most switching mode power supply topologies or even simple mains frequency bridge rectifiers, although some applications are much easier than others. I'm not sure on the edge rates used, but be aware the long tracks between the MOSFET and the input cap and top MOSFET will eventually cause issues as substantial voltage can be developed across that short length when the switching time is short. These 3 parts should really be place right next to each other. Nice video though, it introduces a very useful concept.
@kemalkurt52573 жыл бұрын
I think these converters are used in motherboards to powering cpu's. Great tutorial as always thanks Great Scott
@juanmontes89053 жыл бұрын
Yes, they're used on that, sometimes even is a single IC with both MOSFETs inside of the same package with the control logic
@kemalkurt52573 жыл бұрын
@@juanmontes8905 thanks for additional information
@LightningHelix1013 жыл бұрын
Biggest deference is that mother boards use Multiphase Bucks. Rather than having to add a ton of output capacitors, they can lower the ripple by using several inductors that take turns charging.
@TheParamotorGuy3 жыл бұрын
Very nice tutorial about synchronous vs asynchronous switching power supplies.
@greatscottlab3 жыл бұрын
Glad you liked it!
@innomkr3 жыл бұрын
Another great video from Great Scott!
@greatscottlab3 жыл бұрын
Glad you enjoyed it
@PeregrineBF3 жыл бұрын
It'd be interesting to see a basic buck converter topology with an "ideal diode" (MOSFET + Current Mirror) in place of the normal diode.
@savedwretch3 жыл бұрын
Ok i get :D Great Scott! is what Doc always says in "Back to the Future" ...nice ! :D
@ЕвгенийДюбайло3 жыл бұрын
Great video,Scott.hello from Belarus
@memejeff3 жыл бұрын
awesome video. I was building a boost converter a few days ago and actually wondered how to avoid the power loss from the diode.
@MCsCreations3 жыл бұрын
Pretty interesting project! Fantastic work, dude! 😃 I don't know why, but I never had much luck with step up converters... Go figure. But step downs always worked flawlessly! Anyway, stay safe and creative there! 🖖😊
@acenio6543 жыл бұрын
Always looking for higher efficiency. This video is great, Scott.
@greatscottlab3 жыл бұрын
Glad it was helpful!
@jlucasound3 жыл бұрын
Just be careful that your "1" is not confused for a "7". (Shorten the top of your 1 or put a line under it.) :-) @6:40
@eDoc20203 жыл бұрын
Something very interesting is that synchronous buck converters and synchronous boost converters use exactly the same power components, the only difference is in the control circuits. With the manually controlled circuit you designed you should be able to switch it to a boost converter by putting power into the output pins and putting your load on the input pins. You just need to be careful of the duty cycle.
@jochen_schueller Жыл бұрын
interesting, did not notice that on my own before :)
@reedsebastiyan38083 жыл бұрын
Wew, thats pretty high efficiency. Im amazed. Great video 😊👍
@greatscottlab3 жыл бұрын
Thanks for watching!
@bakedpotato47552 жыл бұрын
I am doing this for my senior design project with more control applications we had a peak efficiency of about 95.5%
@Overclocked2300 Жыл бұрын
You know, I know Ive looked into using software to control a buck converter because dedicated ICs are just getting so small and its hard to troubleshoot a QFN package. I did it successfully once with a PIC18F but now I wonder if I can "upgrade" the design by using a STM32. So its nice to see that someone else attempted such a circuit successfully :) I know other people have reservations about using software to control a buck loop (what if it fails, etc) but with packages getting smaller and more expensive, using a micro makes more sense to me. Just recently, Ive been looking at designs for a 22-12V IN, 5V out, 5A out (or more) buck converter. Most are out of stock, super expensive ($7+!) or super small. So its nice to have this method as a "backup". Thanks for reigniting my interest a bit in this :)
@allthegearnoidea67523 жыл бұрын
Great video and interesting thanks for sharing. The black art of switch mode power supplies. Back in the day we had a lot of small explosions.
@UpinkProduction3 жыл бұрын
I love it good Keep uploading videos like this 👍
@ranger175a2w3 жыл бұрын
Thanks from Texas Scott.
@RicoElectrico3 жыл бұрын
1:00 "But before I do that..." Ngl, I was going to fast forward already XD
@stephencarrasquillo39643 жыл бұрын
Great project! I feel like someone need to buy you a breadboard 😉
@techguyz59162 жыл бұрын
4:40 always 🥲
@Mecano.r2 жыл бұрын
Hi Scott nice video, i think in 4:30 you can use the N channel only in the low side mean connect the S to GND otherwise you need a gate driver. for the same reasons in your video about mosfet drivers...
@nithishvg86993 жыл бұрын
Really helpful video, my final year project is based on this synchronous converter this video made me feel good as I was losing hope In my project thanks sir
@jlucasound3 жыл бұрын
Oh. PS. Love the visual (drawings) on the schematics. You are a great (Scott) teacher..uh, Scott. ;-)
@bam3795 Жыл бұрын
C’est exactement la topologie des étages d’alimentation des GPU, CPU et RAM avec un transistor MOS côté haut et un côté bas. Hautement efficient et capable de délivrer des dizaines d’ampères avec une chauffe contenue.
@moiplov3 жыл бұрын
Next stop is LLC! Thank you for the video!
@plemli3 жыл бұрын
Yes, we'd like to see him suffer.
@greatscottlab3 жыл бұрын
Thanks for watching!
@josefonseca91783 жыл бұрын
Thank you for that amazing chart btw!
@greatscottlab3 жыл бұрын
No problem!
@electronic79793 жыл бұрын
Excellent 👏👏
@devilsMovieBull3 жыл бұрын
Small correction; when the inductor current in a syngronus buck converter is negative, it acts as a boost converter, and there are no extra power losses asociated with that! In fact, switching losses go down, becouse the bridge is said to be soft switching. This is when the inductor current helps discharging the parasitic capasitors in the half bridge. So the converter becomes more efficient when the riple current crosses zero ;)
@samuelrj23502 жыл бұрын
There is extra power loss from the extra circulating current in the inductor's DC resistance.
@BrianG61UK2 жыл бұрын
Only a matter of days ago I watched a different video about making switch mode voltage converters. In that video it was demonstrated that a PCB like this purple one with narrow tracks is not the way to go. Instead use large areas of copper to make all connections.
@billjudge52053 жыл бұрын
Why the 10k R3 and R4? (between the gate and source of the switches) Good driver design with the gate resistor paralleled by a diode, that stops the ring that can cook your driver, shuts off the switches quickly and also stops parasitic turn on in the synchronous rectifier switch. It took me far too much experimentation to learn those lessons... but my multiphase buck designs are running 96-97% efficient, pretty cool stuff. Managing the ripple current by inductor and Fz selection is the other major way to reduce the losses.
@noble_lime3 жыл бұрын
Ya just took electronics in bifocal in 11th and your videos help me in the electronics
@t.nitheesh58983 жыл бұрын
Wanted few of this. 🙏 Nice video bro learnt many.
@power-max3 жыл бұрын
0:30 Those efficiency guidelines are just guidelines. DCM Flyback converter for instance can achieve higher efficiencies as well. Many laptop power bricks have to have a total conversion efficiency of 88% or better. They can also be used for power levels greater than 100W (I have a 130W Dell charger for instance, I would not be surprised to learn if my 200W HP charger is also a Flyback converter) Forward converters are also commonly used on medium power ATX power supplies, even good ones with 80+ ratings. (I would classify the 0:44 drawings for forward, push-pull, and and half bridge all as types of forward converter, being defined mostly by the secondary LC stage.) I have an 850W PSU and I took it apart and verified it was a 2 switch forward. LLC Converters are used where you need really high power! ATX Computer Power Supplies that are over 800W are going to be of the resonant topology.
@n.shiina87983 жыл бұрын
some power brick under 200W uses LLC nowadays
@power-max3 жыл бұрын
@@n.shiina8798 it's often a cost thing. I got a Xbox 360 power brick that's only 120W and it some reason is also an LLC converter. Funny to compare that to the other extreme being the Dell 130W adapter and it's a synchronous Flyback with integrated PFC all in 1 chip!
@n.shiina87983 жыл бұрын
@@power-max i dont usually believe LLC could costs cheaper than flyback but i could be wrong since we're talking about big bulk purchase here. it's a good thing to see LLC being deployed more, though
@power-max3 жыл бұрын
@@n.shiina8798 my favorite LLC converter is the DRSSTC type 🤪
@n.shiina87983 жыл бұрын
@@power-max lol. sparks goes brrr!
@khyarularham28553 жыл бұрын
FET Gate Driver chip always save the day 😁. Happened to me while designing MPPT based interleaved buck converter
@terminsane3 жыл бұрын
the Purple and Green color scheme obviously makes it better out of the gate. Everything else is just gravy
@siberx43 жыл бұрын
The same synchronous switching trick can (and often is in high efficiency designs) used in the bridge rectifier portion of AC to DC power supplies to achieve higher efficiency there too. As noted here, such circuits need to be carefully designed to avoid "shoot-through" conditions where you effectively short the incoming power lines together if your switching FETs are on at the wrong times!
@shapshooter7769 Жыл бұрын
Zero-crossing circuit with RC delay, powered with a bootstrap circuit. That gets passed into a set of Schmitt triggers and driver circuit. It essentially becomes a phase-fired dimmer PSU. Alternatively there exists chips that can do that as well, of can be software-controlled using an MCU
@samindaperamuna63923 жыл бұрын
Could you follow up the project with a current limiting circuit and a proper synchronous converter IC? Thanks
@jackwilliams20103 жыл бұрын
What a treasure. Great video!
@tahermiyagamwala93062 жыл бұрын
Can list some mini projects for our academic courses as we need some good ones and i know you have some up !
@ucantSQ3 жыл бұрын
I always forget that MOSFETs can replace diodes. Good video, as always.
@edvardfranke3 жыл бұрын
Mega gut! Danke für den tollen Content
@greatscottlab3 жыл бұрын
Gerne :-)
@PatrykDarasz3 жыл бұрын
If only JLC had a matt green solder mask it would be my number one shop....