😅 yeah that sort of thing can be confusing for students. But overall good presentation.
@tomatrix75253 жыл бұрын
@@wise_math Haha, I love his style, personally.. Classic!
@tonyhaddad13944 жыл бұрын
What I love about your channel is that you are making many video in 1 day 😍😍😍
@goodplacetostop29734 жыл бұрын
12:55 Αυτό είναι ένα καλό μέρος για να σταματήσουμε More than 80k subs, let’s go! Here’s the daily... Considering the function f : ℝ → ℝ with these properties : - f(a + b) = f(a) + f(b), a and b being any real numbers - f(1) = 1 - f(1/x) = (1/x²) • f(x), x being a non-zero real number Determine f and calculate f(1/√2020)
@KuroboshiHadar4 жыл бұрын
f: R → R f(a+b) = f(a) + f(b) f(1) = 1 f(1/x) = (1/x²)f(x) for all x ≠ 0 Firstly, notice that f(a+0) = f(a) + f(0) = f(a) so f(0) = 0 If p and q are non negative integers, we have → f(p*a) = f(a + a + ... + a) = p*f(a) → q*f(a/q) = f(a/q + a/q + ... + a/q) = f(a) → f(a/q) = f(a)/q Also, f(a-a) = f(a) + f(-a) = f(0) = 0 so f(-a) = -f(a) Now we can take r = p/q to be any rational number, and it will satisfy → f(r*a) = r * f(a) If a = 1, f(r) = r * f(1) = r Assuming f is continuous, this extends to all x in R since the rationals are dense in R, so f(x*1) = x*f(1) = x for all x in R Also, it satisfies f(1/x) = 1/x = 1/x² * f(x) = 1/x² * x = 1/x So f(x) = x f(1/√2020) = 1/√2020 Did I do it right? I don't know if there are other functions that satisfy the conditions though...
@IanXMiller4 жыл бұрын
Or more trivially: f(x) = f(1+1+1+1+...+1)=f(1)+f(1)+f(1)+f(1)+..+f(1)=1+1+1+1+..+1=x so the only function is the identity function.
@mikelolis37504 жыл бұрын
change it to "Αυτό είναι ένα καλό μέρος για να σταματήσουμε"
@light97444 жыл бұрын
First, rewrite the function with f(x+c)=f(x)+f(c) where c be a constant and x be a variable. Then differentiate both side becoming f'(x+c)=f'(x) , which shows f'(x)=d where d is a constant. With this situation, we can conclude f(x)=ex+f where e, f are constants. As f(a+b)=f(a)+f(b) which shows e(a+b)+f=e(a+b)+2f , which leads to the result f=0. Then using f(1)=1, we can conclude f(x)=x. Therefore, f(1/√2020) is itself. (However, i don't know how to proof the function f(x) is differentiable or not, so the solution is with flaw. I hope someone else can do the proofing for me!)
@Pklrs4 жыл бұрын
@@KuroboshiHadar assuming that f is continuous JUST at x=0, we can prove that f is continuous everywhere and then the rest of your proof you ve written
@andreivila76074 жыл бұрын
Wow! I loved the problem! Nice use of the Sophie Germain identity. I would like to see more number theory problems on this channel! :)
@professorpoke4 жыл бұрын
If you want good number theory problems, then this channel is a good to stop.
@TechToppers4 жыл бұрын
Do you know? I saw thumbnail for 2 minutes and I solved the problem by intuition.(I got that Ms Sophie would help I mean)
@gilangNoDrop4 жыл бұрын
Yeah I solved it too by Sophie germain, we can prove that (x^4+2(2^(2^(x-2)))^2 - 2(x^2)(2^2^(x-2)) > 1 for x≥2
@TechToppers4 жыл бұрын
@@gilangNoDrop Yup!
@HagenvonEitzen4 жыл бұрын
08:00 Without reference to irrationality: Do x=-1 "by hand" and then: If x
@parmilakumari31464 жыл бұрын
Wow you find such cool NT contest problems
@ИбадатЖұмабек4 жыл бұрын
Nice problems and solutions
@acentasecond37214 жыл бұрын
great video, you gave me some inspiration for a future video!
@demenion35214 жыл бұрын
for proving that y-z>1, we can almost factor it: y-z = x^8+2*2^(2^(x-1))-2*x^2*2^(2^(x-2)) = 1/2 {[x^4-2*2^(2^(x-2))]²+x^4}. as x obviously needs to be odd, the squared term is strictly greater than 0 and moreover an odd number. therefore y-z>=1/2 (1+x^4)>1 for all odd x>1.
@KaedennYT4 жыл бұрын
That orange chalk looks quite nice this time of year. You should use it more often! I find it easier to see than the white chalk for some reason, too.
@Kettwiesel254 ай бұрын
x^4 = 1 mod 5 for all x by small Fermat. Thus the first summand is always 1 mod 5. The second one is 4 mod 5 though for x>1 since 2^2 is and 2^x is divisible by 4, thus 2^2^x =1 mod 5 as above. So the only interesting x is x=1 and x=0, which is where we get 1+16=17, a prime, and 0+2^3=8, a non-prime.
@antoniopalacios81604 жыл бұрын
8:00 I think, actually there is a mistake with the parentheses. We have that for x=-1, 2^2^(-1)=0.25. To get sqrt(2) we need to put the parentheses 2^(2^(-1)). And so on for x=-2,-3,etc. Thank you.
@reeeeeplease11782 жыл бұрын
No, if you write x^y^z that notation means x^(y^z) instead of (x^y)^z. So something like 2^2^2^2 is evaluated from the "top" down: 2^2^2^2 = 2^2^4 = 2^16 ~ 60,000 If you want to do from the bottom up, you put parantheses: 256 = 16^2 = (4^2)^2 = ((2^2)^2)^2
@MrRyanroberson14 жыл бұрын
interesting little homework at the end. turns out when you factor to get y^2-z^2 the way you did, you do so exactly such that y+z and y-z are perfect squares themselves
@davidepierrat90724 жыл бұрын
if p is prime, p and phi(phi(p)) are coprime so you can't get anything by crt so no need to even try looking at it mod stuff
@jayvaghela98884 жыл бұрын
Great work you deserve more likes, love from India 🇮🇳
@wesleydeng714 жыл бұрын
Made the same first attempt and then switched to factoring.😀
@Tomyato4 жыл бұрын
That’s powerful 🔥
@egillandersson17804 жыл бұрын
Damned ! I got the correct factorization but not the conclusion ☹️. Nice probleme and nice solution ! Thank you
@aldinofahreza4 жыл бұрын
I trust that's only 1.. and you prove it 😂😂😂
@xchomphk.9788 Жыл бұрын
x = 1 holds, for x>=2, 2^x + 2 = 2 mod 4. Meaning that 2^(2^x+2) = 4 mod 5. Its easy to prove any x^8 is 1 mod 5 through trial and error, therefore for x>=2, the expression is divisible by 5 , therefore the only solution is x = 1. Honestly a really easy olympiad Q2 problem even for my standards
@СВЭП-и4ф4 ай бұрын
you don't cover case where x mod 5 = 0 and it is really the hard part in this solution, i was not able to prove this case.
@xchomphk.97884 ай бұрын
@@СВЭП-и4ф oh shit im an idiot good catch
@T6e6r6o4 жыл бұрын
Math and flag nerd here, love all your videos. Just a little nitpick. Just like the flag of the United States, the union (ie. the stars part) of which, when displayed vertically, must be on the upper-left corner from the observer's perspective, the Greek flag's canton (ie. the cross part), when displayed vertically, must also be on the upper-left corner from the observer's perspective.
@justforfun22384 жыл бұрын
nerd
@caesar_cipher4 жыл бұрын
Sheldon Cooper presents Fun with Flags
@mondolee4 жыл бұрын
that’s interesting... does it mean that these flags when vertically viewed have to be mirrored?
@ErmisSouldatos4 жыл бұрын
Also the stripes are horizontal
@ErmisSouldatos4 жыл бұрын
The flag is turned around 90°
@fivestar58553 жыл бұрын
My brain just burned out
@TheQEDRoom4 жыл бұрын
can we simplify this by noting that p must be a sum of two squares so p must be of 1 mod 4? then it follows that x^8 is 1 mod 4 also.
@holomurphy224 жыл бұрын
When x is odd we have x^2 = 1 mod 8. And here x is obviously odd. So its kind of trivial that x^8 is 1 mod 4
@jotaro63904 жыл бұрын
I solved it!
@giuseppebassi74064 жыл бұрын
Wait wait. Since i have used many times the Sophie-germain identity, i have already thought about that when i saw the title. I did the same method, but i have been stuck to prove that y-z is bigger than 1 for all x>2. In fact, i tried that with induction but without results. How can this be so simple that he gave that to homework problem? 😟
@michaelcampbell69223 жыл бұрын
Set f(x)=y-z. Find f(3). Use f’(3) to show f(x) is increasing for x>=3.
@sayansircar3604 жыл бұрын
Make a video on madhava- Leibniz series
@yla37274 жыл бұрын
9:55 it looks like you used the formula of a^2 + b^2 = ( a + b )^2, which isn't correct as I learnt at school. I had checked your term and get bad result
@AnkhArcRod4 жыл бұрын
:) He used a^2 + b^2 = (a+b)^2 -2ab. In this case, the 2ab turns out to be a square as well.
@yla37274 жыл бұрын
@@AnkhArcRod thanks and excuse me
@yashvardhan20934 жыл бұрын
What I did was a little complicated I first showed that if x is negative then exponent of 2 is fractional and hence it is not an integer only. Then I got the solution for x=1. Then I proved that there exists no solution for x being even . Thus I proved x is odd But clearly if it’s odd it’s unit digit is 1,3,5,7,9 . By unit digit cyclicity if I showed that in case of 1,3,7,9 unit digit of x^8 is 1 and that of the other part is 1 always thus the unit digit is 5 and hence divisible by 5. But when unit digit is 5 This didn’t work but then Sophie Germain struck me when I saw that 4 and remembered about the factorization
@yashvardhan20934 жыл бұрын
There is mistype I showed that the unit digit of other part is 4
@SB-wy2wx4 жыл бұрын
Could someone please expand on his reasoning for choosing mod 5, his "8 = 2×4, 4 = 5-1" is not making sense. Why cant u do 8 = 8×1, and 8 = 9-1, so choose mod 9? Sorry if question is stupid, just new to Number theory
@AlephThree4 жыл бұрын
8 is not coprime to 2 so you can’t apply FLT
@jkid11344 жыл бұрын
Good excuse for the colored chalk, I agree
@keyanaskar19814 жыл бұрын
You could have used sophie germain i dentity too ig?
@the-hustle-guy4 жыл бұрын
Plz do this question Cube root of (5-x)=5-x³.
@IanXMiller4 жыл бұрын
You get three roots of a degree six polynomial, only one of which is real.
@mehmeterciyas68444 жыл бұрын
@@IanXMiller no shit.
@erenozilgili46344 жыл бұрын
@ゴゴ Joji Joestar ゴゴ I got to x^3 +x =5 part but how to solve it can you explain?
@blazedinfernape8864 жыл бұрын
@ゴゴ Joji Joestar ゴゴ It can be approached intutively because if f and f^-1 are continuous in an interval then f and f^-1 are images of each other with respect to y=x and an image and object can equal only at that line itself.
@blazedinfernape8864 жыл бұрын
@@erenozilgili4634 You can use newton method to approximate the solution because the roots of the polynomial are not very nice(one ugly real root and two complex uglier roots)
@antoniussugianto79734 жыл бұрын
Clearly Never prime for even x
@wise_math4 жыл бұрын
Right. But also have to consider the odds, and this is included in x >= 2.
@raqmet4 жыл бұрын
Good video
@jkid11344 жыл бұрын
Can I copy somebody's homework?
@justforfun22384 жыл бұрын
y
@user-A1684 жыл бұрын
Good
@jonathanjacobson70124 жыл бұрын
Can anyone recommend me a concise book that goes through the topics mentioned in this video? e.g. Fermat's little theorem, factorization, etc.
@stephenbeck72224 жыл бұрын
For Fermat’s Little Theorem, I would look at an abstract algebra book. Plenty of good ones out there and you can google reviews. The factoring stuff is high school level computation plus a lot of intuition/cleverness which is mostly just Michael’s familiarity with contest problems.
@Miguel-xd7xp4 жыл бұрын
Maybe The Justin steven's website could help you
@jonathanjacobson70124 жыл бұрын
@@Miguel-xd7xp not much material there, but thanks.
@Miguel-xd7xp4 жыл бұрын
@@jonathanjacobson7012 Also the AoPS (art of problem solving) can help, there are more people who can recommend a book
@marceliusmartirosianas61044 жыл бұрын
8^x+2^x+2= [[[8x+4x]]= [[ 6x+6]]=[[ x =1 ]] marcelius mrtirosianas
@dertechl66283 жыл бұрын
So let's see .. x raised to the power of snowman?
@tilek44174 жыл бұрын
Sophie Germain
@shreyathebest1004 жыл бұрын
the factorisation wasnt so hard after all
@benjaminbrat39224 жыл бұрын
Sophie Germain identity for the win =)
@mathissupereasy4 жыл бұрын
What is it?
@ahuman65464 жыл бұрын
@@mathissupereasy x⁴+4y⁴=(x²+2xy+2y²)(x²-2xy+2y²)
@km-pw2fi4 жыл бұрын
But how would you apply it? The second term is always to the power of x and not 4?
@besusbb4 жыл бұрын
tootoo the tootoo the ex
@arkitson4 жыл бұрын
7:24 "None *IS rational" ;)
@kenichimori85334 жыл бұрын
This problem solution is not even prime number.=0
@jawaduddin42444 жыл бұрын
x=1 is one solution without watching the vid. 1^8 + 2^2^1 + 2 = 1+4+2= 7 And 7 is prime