Griffiths QM Problem 2.2 Solution: Proving that Energy has to be Greater than Potential

  Рет қаралды 4,567

Nick Heumann University

Nick Heumann University

Күн бұрын

Пікірлер: 7
@abdussamifarooqui5109
@abdussamifarooqui5109 2 жыл бұрын
Love the video sir! Please keep making these videos we really appreciate this.
@BANGATAN_ARMY_7
@BANGATAN_ARMY_7 Жыл бұрын
Your Video Helps Me Alot... Thank You So Much Sir... The Way You Explain...It Is So Easy To Understand...☺️
@sairanadeem385
@sairanadeem385 Жыл бұрын
Thankw sir🥰
@RishabhKhatri-rt9pf
@RishabhKhatri-rt9pf Ай бұрын
Wouldn't the same thing happen if E is greater than Vmax?
@Apalion41
@Apalion41 Жыл бұрын
I don't see how this is a proof, considering for instance that exp(-|x|) is also always concave up and yet it is normalizable.
@harryallen5392
@harryallen5392 9 ай бұрын
It, in fact, is not always concave up. For x0, the function mirrors itself around the y-axis as the mod throws out a positive x so -|x|=-x, tending to 0 as x tends to positive infinity and thus, we see that the function is, in fact, normalisable.
@strat0caster124
@strat0caster124 12 күн бұрын
In fact, you can construct a phi(x) = (pi)^(-1/2)*(r^2 - x^2)^(-1/4), x∈(-r, r), which is normalizable even though phi(x) -> infinity as x approaches ±r, you can verify this by integrating phi^2 over (-r, r), replace x = -rcos(theta) and integrate over theta∈(0, pi) instead. ...Yet phi(x) and phi(x)'' have the same sign (they're always positive). So, I think this problem is fundamentally wrong, at least mathematically. You need to add more constraints to phi(x) than just normalizable (in the ∫phi(x)^2dx= 1 context)
Proof of Ehrenfest Theorem -DETAILED - (Griffiths QM 1.12 Solution)
27:42
Nick Heumann University
Рет қаралды 4,7 М.
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Problem 2.5a, b | Introduction to Quantum Mechanics (Griffiths)
10:24
Hayashi Manabu
Рет қаралды 11 М.
The Integral You HAVE TO KNOW to MASTER Quantum Mechanics!
11:05
Nick Heumann University
Рет қаралды 1,9 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 515 М.
Problem 2.10a | Introduction to Quantum Mechanics (Griffiths)
7:01
Hayashi Manabu
Рет қаралды 9 М.
Griffiths QM Problem 4.20: Proving Commutators of Angular Momentum
34:39
Nick Heumann University
Рет қаралды 2,7 М.
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН