[핵심 머신러닝] 랜덤포레스트 모델

  Рет қаралды 34,745

‍김성범[ 교수 / 산업경영공학부 ]

‍김성범[ 교수 / 산업경영공학부 ]

Күн бұрын

Пікірлер: 53
@보라색사과-l1r
@보라색사과-l1r 4 жыл бұрын
너무 감사합니다 강의 질에 눈물만이 나네요
@김성범교수산업경영공
@김성범교수산업경영공 4 жыл бұрын
감사합니다!
@Picklpickls
@Picklpickls 3 жыл бұрын
교수님 너무나 유익한 강의 정말 정말 감사드립니다. 학교에서 머신러닝을 배우고 있는데 저희 교수님께서는 너무나 러프하게 개략적인 컨셉만 잡아주셔서 모델이 어떻게 작동되는지에 대해서 너무나 궁금했었는데 정말 좋은 강의를 만났습니다! 어떻게 이렇게 군더더기 없이 명확하게 이해가 되는 강의를 하실 수가 있나요! 항상 들을 때 마다 감탄하고 있습니다ㅠㅠ 파이썬으로 완성된 코딩만 보다가 어떻게 작동되는지 파악하고 제가 변경시간 파라미터들이 적용되는지 상상하게 되니 훨씬 재미있게 접근 되네요! 뉴욕에서 안되는 영어로 이해가 안되는 머신러닝 배운다고 골골대고 있었는데 교수님의 강의는 정말 한줄기 빛 그자체 입니다 감사합니다!!!
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다! 도움이 되셨다니 다행입니다.
@fghj-zh6cv
@fghj-zh6cv 5 жыл бұрын
이번 online retail 프로젝트에서 저와 동료들이 생각없이 사용했던 random forest를 통해서 결측값을 찾아내기 위해서 revision을 하는데 정말로 도움이 많이 되었습니다. 자꾸 built in model에 의존을 하다보니깐 석사때 배웠던 내용들을 실무에 적응할 시간이 없어 많이 까먹었는데...그때는 너무 어렵게 배웠는데 40분도 안되는 시간에 이렇게 쉽게 가르쳐주시다니 교수님께 배우는 학생들이 부럽군요~~너무 감사드립니다.
@김성범교수산업경영공
@김성범교수산업경영공 5 жыл бұрын
감사합니다!
@jainjanechoi
@jainjanechoi Ай бұрын
교수님 좋은 강의 감사합니다
@김성범교수산업경영공
@김성범교수산업경영공 Ай бұрын
감사합니다!
@최규철-u9b
@최규철-u9b 4 жыл бұрын
17:38 y가 1일 확률을 어떻게 구할 수가 있는건가요? Training Accuracy 같은 경우는 training data를 바탕으로 구할 수 있다고 생각하는데 test instance는 어떤식으로 구할 수 있는지 모르겠습니다. 강의 정말 좋습니다^^ 감사합니다.
@이재원-u4j
@이재원-u4j 2 ай бұрын
제가 이 명강의를 지금 보고 있네요ㅠㅠ 늦었지만 열심히 보고 실력향상시키겠습니다
@yahyahbuk
@yahyahbuk 5 жыл бұрын
어려운 내용인데 정말 쉽게 전달해주시네요 감사합니다^^
@김성범교수산업경영공
@김성범교수산업경영공 5 жыл бұрын
감사합니다!
@김정의-r8m
@김정의-r8m 3 жыл бұрын
교수님 사랑해요
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다!
@dino3297
@dino3297 4 жыл бұрын
글로 설명된 서적이나 책보다 쉽게 설명하시는거 보고 감격했습니다 ㅠ.ㅠ
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다!
@김평-c6n
@김평-c6n 5 жыл бұрын
쉽고 재밌게 설명해 주셔서 항상 즐강하고 있습니다. 감사합니다~
@haikuandbeth
@haikuandbeth 3 жыл бұрын
교수님 강의 잘 듣고 있습니다 감사합니다 !
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
항상 좋은 평가해 주셔 감사합니다.
@namuni67541
@namuni67541 3 жыл бұрын
이번 강의도 정말 쉽게 설명해주셔서 감사합니다!
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다!
@dbxnqwhdk
@dbxnqwhdk 3 жыл бұрын
강의 잘 들었습니다. OOB error 계산 과정에서 의문점이 있습니다. n개의 feature를 가지고 있는 데이터셋에서 부트스트랩을 통해 m개의 데이터 셋을 생성했다고 한다면, 각 부트스트랩 데이터셋에서 계산되는 OOB는 n개 되는건가요? feature가 n개니까 각 임의로 뒤섞은 데이터 집합에 대해 OOB error를 계산하면 n번의 계산이 이루어져야 한다고 생각했는데, 32:10의 화면에서 ri와 ei가 똑같은 개수로 표현되어 있어 약간 헷갈리네요.... ei에서 i가 부트스트랩 횟수가 아니라 feature의 개수가 되어야 하는게 아닌가 라고 생각이 드는데, 맞는지 알 수 있을까요?
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
Bootstrap 샘플마다 하나의 tree가 생성되고, 각 tree마다 OOB가 계산됩니다.
@dbxnqwhdk
@dbxnqwhdk 3 жыл бұрын
​@@김성범교수산업경영공 아.... 제가 잘못 생각한것 같습니다... 이제야 이해가 된것 같습니다.. 답변 감사합니다!
@pyg8939
@pyg8939 3 жыл бұрын
랜포를 써야하는 활동을 하게됐는데 랜포의 랜도 몰라서 들었습니다! 이해도 잘 되고 너무 좋아요 감사드립니다 :)
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
이해 되셨다니 저도 기쁩니다~
@윤희상-o2m
@윤희상-o2m 4 жыл бұрын
오늘도 잘 봤습니다. 감사합니다.
@김성범교수산업경영공
@김성범교수산업경영공 4 жыл бұрын
감사합니다~
@albertlee5312
@albertlee5312 5 жыл бұрын
감사합니다 교수님
@김성범교수산업경영공
@김성범교수산업경영공 5 жыл бұрын
감사합니다!
@dsadassad21310dsa
@dsadassad21310dsa 4 жыл бұрын
좋은 강의 감사합니다 !!
@정지원-i3b1b
@정지원-i3b1b Жыл бұрын
좋은 강의 감사드립니다. OOB를 활용한 변수 별 중요도를 구하는 과정이 바로 feature importance가 구해지는 과정인가요?
@김태완-j6y
@김태완-j6y Жыл бұрын
네. 맞습니다!
@nax2kim2
@nax2kim2 3 жыл бұрын
영어자료 보다가 한글자료 보니까 넘 좋아요ㅠ 감사합니다!!
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다!
@김이삭-i2s
@김이삭-i2s 3 жыл бұрын
좋은 강의 감사합니다! 분류트리에서 나온 값이 랜덤포레스트에서 어떻게 aggregating되는지 알았습니다! 혹시 그러면 회귀트리도 똑같이 적용되는건가요?
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
네. 회귀트리에서는 일반적으로 평균을 취해 aggregating 합니다.
@kanetla8692
@kanetla8692 5 жыл бұрын
중요변수선택 부분관련해서 질문이 있습니다. 처음에 decision tree를 10개로 설정했다고 가정했을 때, 1. 또 다른 10개의 out of bag으로 이루어진 트리가 만들어지는게 맞나요? 2. 중요변수를 선택할때 왜 out of bag데이터로 하는건가요? 그냥 처음에 만든 10개의 decision tree(즉, out of bag데이터가 포함되지않은 트리)로 에러 계산하고 각 변수에 임의의 값 넣어서 중요변수를 계산하면 안되나요? 이게 혹시 그 어떤 논문에 나온 oob를 쓰면 test셋을 설정하는거만큼 정확하다는 이유 때문인가요? 답변해주시면 감사하겠습니다.
@MZ-pj4eq
@MZ-pj4eq 4 жыл бұрын
교수님, 감사합니다!!
@김성범교수산업경영공
@김성범교수산업경영공 4 жыл бұрын
감사합니다!
@mzz1226-b9n
@mzz1226-b9n 4 жыл бұрын
설명 넘 명료합니다 감사해요!
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다!
@이윤성-f1e
@이윤성-f1e 3 жыл бұрын
안녕하세요 좋은 강의 제공해주셔서 감사합니다! 관련 질문이 있어서 댓글 남깁니다. 1) Random Forest의 중요 변수 선택 방법을 Decision Tree에 동일하게 적용하여 중요 변수를 추출해도 의미 있는 결과라고 할 수 있을까요? 아니면 Decision Tree는 단순히 Root Node와 가까운 변수들이 중요한 변수라고 해석하는 것이 더 적절한가요? 2) Random Forest의 핵심 아이디어인 Diversity와 Random 확보 중에서, Bagging을 활용한 Diversity의 중요성은 이해했습니다. 그런데 Random 확보를 위해 특정 변수를 선택하는 것보다 모든 변수를 활용하여 Tree를 구축하는 것이 정확성 면에서 더 좋지 않나요? Random 확보를 위해 정확성을 포기하는 것이 의미가 있는 것인지 궁금합니다. 3) 예전에 어떤 서적에서 앙상블이 효과가 좋은 이유를 수학적으로 증명하기는 어렵다고 한 것을 본 적이 있는데, 이것에 대한 교수님의 생각은 어떠하신지 궁금합니다. 감사합니다!!
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
1. Random Forest의 경우 여러개의 Decision Tree를 고려해서 중요 변수를 선택하기 때문에, 해당 방법을 단순 Decision Tree에 적용하기는 어려울 것 같습니다. 2. 특정변수를 사용하여 Tree를 하나만 구축하는 것이 아니라 여러개의 Tree를 구축하는 것이기 때문에 정확도는 떨어지지 않습니다. 3. 앙상블의 효과를 수학적으로 증명해 놓은 것은 저도 보지 못했습니다.
@즐쌤코딩
@즐쌤코딩 3 жыл бұрын
좋은강의 감사합니다 화면이 초점이 흐리게 보이는데 모가잘못된걸까요?
@김성범교수산업경영공
@김성범교수산업경영공 3 жыл бұрын
감사합니다. 설정에서 동영상 화질을 고해상도로 바꿔 보시지요...
@박쏘-n4z
@박쏘-n4z 4 жыл бұрын
안녕하세요 랜덤포레스트로 과거 백테스트를 하려면 어떻게 하면 될까요? 머신러닝에 과거 백테스트가 의미가 있는지 궁금합니다. 예를 들어 주가를 예측 하는 경우에요~
@johnjeong5044
@johnjeong5044 9 ай бұрын
중요 변수의 중요도값의 한계에 대해서도 설명이 있으면 좋았을 것 같네요
@김성범교수산업경영공
@김성범교수산업경영공 9 ай бұрын
아직 정확한 답은 없어도 같이 생각해 보면 좋을 주제입니다!
@doclsvlc7878
@doclsvlc7878 5 жыл бұрын
강의슬라이드자료는 어디서 볼 수 있나요??
@김성범교수산업경영공
@김성범교수산업경영공 5 жыл бұрын
강의슬라이드는 아직 공개하고 있지 않습니다~
@김종범-z3b
@김종범-z3b 9 ай бұрын
그저빛......
[핵심 머신러닝 ] 의사결정나무모델 2 (분류나무, Information Gain)
36:25
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 17 М.
[핵심 머신러닝] SVM 모델 2 (Soft Margin SVM, Nonlinear SVM, Kernel)
36:55
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 19 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
[핵심  머신러닝] Boosting
38:33
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 14 М.
[핵심 머신러닝] 의사결정나무모델 1 (모델개요, 예측나무)
29:39
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 24 М.
예술의 경지, 딥러닝 시계열 예측 모델
12:31
Conditional Average Treatment Effects: Forests
36:50
Stanford Graduate School of Business
Рет қаралды 14 М.
[핵심 머신러닝] K-nearest neighbors & Distance Measures
42:55
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 19 М.
[핵심 머신러닝] Hidden Markov Models - Part 1 (개념, Evaluation)
58:44
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 20 М.
[핵심 머신러닝] RNN, LSTM, and GRU
1:17:39
‍김성범[ 교수 / 산업경영공학부 ]
Рет қаралды 21 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН