Linear Algebra - Lecture 25 - The Invertible Matrix Theorem

  Рет қаралды 48,192

James Hamblin

James Hamblin

Күн бұрын

Пікірлер: 17
@Rand3mAnclrew
@Rand3mAnclrew 5 жыл бұрын
Thank you for making videos. There are so little resources online for learning Linear Algebra its astounding. Could you please make sure to put emphasis on proofs? My textbook (Larson's Elementary Linear Algebra) seems prove every proof by saying "We'll leave it to you"
@lover-of-Shuhada
@lover-of-Shuhada 7 ай бұрын
😂😂..
@flossy3432
@flossy3432 4 жыл бұрын
you saved my life
@Brahma2012
@Brahma2012 5 жыл бұрын
Thank you James
@huipingyang4096
@huipingyang4096 3 жыл бұрын
Statement f and I says the same thing is onto and one-to-one? is this true?
@chenlecong9938
@chenlecong9938 4 жыл бұрын
Also in 9.31 statements I and F together are implying that the transformation t is both onto and one to one.Are you implying that one to one is in a sense,onto?since by definition,onto is when one output is given by AT LEAST one input?
@HamblinMath
@HamblinMath 4 жыл бұрын
No, one-to-one and onto are separate concepts. A generic *function* can be one-to-one but not onto, or onto but not one-to-one. However, a *linear transformation* from R^n to R^n cannot be one without being the other. That's one of the special properties of linear transformations.
@chenlecong9938
@chenlecong9938 4 жыл бұрын
James Hamblin thanks for kindly replying.
@ghsjgsjg53chjdkhjydhdkhfmh74
@ghsjgsjg53chjdkhjydhdkhfmh74 4 жыл бұрын
Wow😮 thank you!
@Cizzo8
@Cizzo8 3 ай бұрын
I'm confused which video it actually is that g,h,i and k,l are explained by you. I don't think it's lecture 18?
@chenlecong9938
@chenlecong9938 4 жыл бұрын
7.21 it seems like you are implying that e sub i is one of the column of the identity matrix.then x must’ve been the column of the inverse of A.then you’re already assuming A has an inverse matrix and is thus invertible?sorry mate,really don’t get it.
@HamblinMath
@HamblinMath 4 жыл бұрын
That's what "e_i" means: the i-th column of the n x n identity matrix. Statement (g) says that Ax=b has a solution for *every* vector b, so I'm applying that to the vector b = e_i.
@ghsjgsjg53chjdkhjydhdkhfmh74
@ghsjgsjg53chjdkhjydhdkhfmh74 4 жыл бұрын
I don't understand proving g to a😓😓 can anyone please explain??
@liaodaniel1684
@liaodaniel1684 3 жыл бұрын
One can continue to use the same D and show that DA=I_n (by similar approach, but with (e_j)^T), so A is invertible because it has inverse D.
@user-xn4yu5rn9q
@user-xn4yu5rn9q 4 жыл бұрын
Thank you so much
@Ricky-gc7cj
@Ricky-gc7cj 5 жыл бұрын
Thank!
@EDROCKSWOO
@EDROCKSWOO 4 жыл бұрын
LEBRON JAMES is a god.
Linear Algebra - Lecture 26 - Determinants
14:54
James Hamblin
Рет қаралды 28 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Linear Algebra - Lecture 24 - Elementary Matrices and Inverses
15:58
James Hamblin
Рет қаралды 124 М.
40 -  Invertible matrices
20:57
הטכניון - מכון טכנולוגי לישראל
Рет қаралды 48 М.
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 83 М.
Linear Algebra - Lecture 23 - The Inverse of a Matrix
8:26
James Hamblin
Рет қаралды 27 М.
Nullspace Column Space and Rank
20:59
Dr Peyam
Рет қаралды 85 М.
Visualize Spectral Decomposition | SEE Matrix, Chapter 2
15:55
Visual Kernel
Рет қаралды 83 М.
LU-Decomposition of a Matrix Explained | Linear Algebra
21:24
Wrath of Math
Рет қаралды 3,9 М.
Why is the determinant like that?
19:07
broke math student
Рет қаралды 185 М.
Elementary matrices | Lecture 13 | Matrix Algebra for Engineers
11:24
Jeffrey Chasnov
Рет қаралды 50 М.
Linear Algebra - Lecture 17 - Matrix Transformations
11:32
James Hamblin
Рет қаралды 190 М.