e^(-1/z^2) Essential Singularity

  Рет қаралды 3,443

Prachi Mishra

Prachi Mishra

Күн бұрын

Пікірлер: 10
@Mjafar2000
@Mjafar2000 Жыл бұрын
What is zero of this function??
@shubh.ruhela
@shubh.ruhela 9 ай бұрын
Maine pada tha tha ki function exp(-1/z^m) nowhere analytic hota hai. Nowhere analytic hai to no singularities nahi hogi yaha ??? Plz clear my confusion!
@shubh.ruhela
@shubh.ruhela 9 ай бұрын
@@prachi_ but this opposes the definition of singularity! Csir Feb 2022 QID 527 mein ek aisa question aaya tha.
@prachi_
@prachi_ 9 ай бұрын
@@shubh.ruhela ok i got your point. According to the definition of singularity, a point is said to be a singularity of a function if its neighbourhood contains at least 1 point at which it is analytic .
@shubh.ruhela
@shubh.ruhela 9 ай бұрын
@@prachi_ now can we can the given function is nowhere analytic but satisfies the CR equation over C ? Also, what if the function is not given in the price wise form ( i.e. f(z) = 0 at z =0 not given) only f(z) = exp(-1/z²) is given then what can be about its singularities? I found two answers of this question 1) z=0 is an essential singularity (coaching institute assignment sheet) 2) no singularities (in official answer key and in dips academy handwritten notes) Plz clear my doubt! Which one is right ?
@prachi_
@prachi_ 9 ай бұрын
If the function is not analytic it will not satisfy CR equation
@prachi_
@prachi_ 9 ай бұрын
And at z=0 the f(z) = e^ (-1/z^2) will give 0 . Whether it is mention or not mention in question
@Amitkumar-vk3ln
@Amitkumar-vk3ln 2 жыл бұрын
nice explanation
@prachi_
@prachi_ 2 жыл бұрын
🙂
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 41 МЛН
Riemann Zeta Function ξ(s) | analytical Number theory| Msc
32:36
Hurwitz's Theorem proof | Analytical number theory | Msc
32:51
Prachi Mishra
Рет қаралды 335
Isolated essential and Non isolated essential singularity|| Examples
15:23
Maths with Dr. Upasana pahuja Taneja
Рет қаралды 703
Irrationality of e |Analytical Number Theory |Msc
14:07
Prachi Mishra
Рет қаралды 114
Calculus. ||. Limit. ||. Excercise 1.3 ||. Part #02
8:58
Sir Shoaib Arif
Рет қаралды 21
Complex Analysis - Singular Points and Residue in Hindi (Lecture10)
34:25
Bhagwan Singh Vishwakarma
Рет қаралды 586 М.