Hastads Attack

  Рет қаралды 12,356

Jeff Suzuki:  The Random Professor

Jeff Suzuki: The Random Professor

Күн бұрын

Пікірлер: 6
@DanielGoodrick
@DanielGoodrick 5 жыл бұрын
@ 5:00, I didn't get where 559, 1603 and 433 came from WRT CRT. I also couldn't get the sum 15625.
@JeffSuzukiPolymath
@JeffSuzukiPolymath 5 жыл бұрын
These come from our solution to the Chinese Remainder theorem. This is a little hard to typeset in a KZbin comment, but I'll try my best here (I'm actually working on updating the cryptography videos, but the Chinese Remainder Theorem videos are a few weeks off...I do have an older version of the Chinese Remainder Problem available that might help: kzbin.info/www/bejne/pXywioGBl6t7eKc Roughly speaking, to solve: x = a mod p x = b mod q x = c mod r (where "=" is "congruent" and p, q, r are relatively prime), we need to solve a set of congruences; the 559, 1603, and 433 are the values that work to make the congruence true (that's the part that's rather hard to typeset). Notice that if we add the three factors together, then since the second and third are products of 629, the sum will have the same remainder mod 629 as the first. Likewise, because the first and third are multiples of 2173, the sum of all three will have the same remainder mod 2173 as the second; and so on. So the sum will solve the Chinese Remainder Problem.
@metarealm
@metarealm 3 жыл бұрын
@@JeffSuzukiPolymath i think it should have been 558
@DSieh
@DSieh 2 жыл бұрын
clear and neat
@Swamy456
@Swamy456 4 жыл бұрын
The smallest solution is not 15625 it's 12018.
@Jinzo-
@Jinzo- 3 жыл бұрын
if you run crt from sympy module in python, it will show 15625 is the smallest solution
RSA and CRT
5:50
Jeff Suzuki: The Random Professor
Рет қаралды 17 М.
Chinese Remainder Theorem and Cards - Numberphile
11:13
Numberphile
Рет қаралды 336 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
TOÁN 10 - PHƯƠNG TRÌNH ĐƯỜNG THẲNG
1:20:18
Làng luyện thi Konoha
Рет қаралды 2
Wieners attack
11:55
Jeff Suzuki: The Random Professor
Рет қаралды 13 М.
Chinese Remainder Theorem
13:15
Maths with Jay
Рет қаралды 446 М.
The Chinese Remainder Theorem and RSA | Math 361
20:38
Tommy Occhipinti
Рет қаралды 2,5 М.
Attacking RSA with lattice reduction techniques (LLL)
28:41
David Wong
Рет қаралды 19 М.
The Chinese Remainder Theorem (Solved Example 1)
14:22
Neso Academy
Рет қаралды 654 М.
Chinese Remainder Theorem, 2-minute Method
8:48
Errichto Algorithms
Рет қаралды 87 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН