How a Mathematician Would Prove These 4 Results

  Рет қаралды 1,591

DiBeos

DiBeos

Күн бұрын

Пікірлер: 16
@looped89
@looped89 3 ай бұрын
I love what you are doing! Could you do some on homology and cohomology? :0 cheers!
@dibeos
@dibeos 3 ай бұрын
@@looped89yesssss, that’s a great idea actually. There not many high quality videos on these subjects in KZbin
@jammasound
@jammasound 3 ай бұрын
Pretty much knew you were going to do contradiction for the other 3, after seeing the 1st one. Nice little intro to analysis for me. I'm still in Calculus but I want to jump into analysis at some point.
@dibeos
@dibeos 3 ай бұрын
@@jammasound yeah, even though it is kind of “repetitive”, because the idea is the same for all 4, I believe that it’s a very good exercise to reinforce the argument 4 times in slightly different proofs. Honestly , that’s the way to learn how to prove stuff in math, by practicing over and over again
@JGLambourne
@JGLambourne 3 ай бұрын
Can't this be proved without using contradiction? I worry about using proof by contradiction when working with infinite sets.
@dibeos
@dibeos 3 ай бұрын
@@JGLambourne it can definitely be proved without using contradiction. But what is the problem with using it?
@jammasound
@jammasound 3 ай бұрын
I think its OK here, because for any two real numbers you have exactly one of the following is true: a < b, a = b, a > b.
@JGLambourne
@JGLambourne 3 ай бұрын
@@jammasound How do you prove that ? The real numbers are equivalence classes of Cauchy sequences of rational numbers.
@jammasound
@jammasound 3 ай бұрын
@@JGLambourne Not sure, perhaps its taken for granted like the existence of parallel lines.
@willnewman9783
@willnewman9783 3 ай бұрын
​@@JGLambourneI don't know why you would worry about proof by contradiction with infinite sets. Anyway, to show that for all real numbers either a=b, ab, using the Cauchy sequence definition, one needs to define
@mairc9228
@mairc9228 3 ай бұрын
by using fairly routine tricks like multiplying my -1 squared you can actually show a and b just from c and d. also, using similar methods, along with a special case of c where for all -inf(-A)=sup(A) and similarly for d, you can show that a and c imply d and that b and d imply c, and by what we saw above, only ac, bd, or cd need to be proven in order to make sure all 4 are correct i will leave the proofs below: suppose c and d and x>0, then inf(xA)=inf(-(-x)A). using c, inf(-(-x)A)=-sup(-xA), and then using d: -sup(-xa)=-(-x)inf(A)=xinfa, thus we obtain b similarly, sup(xA)=sup(-(-x)A). using d, sup(-(-x)A)=-inf(-xA), and then using c: -inf(-xa)=-(-x)sup(A)=xsup(A), and so a is true suppose x
@omargaber3122
@omargaber3122 3 ай бұрын
It would be better if you started with deep examples and then did the general explanation.
@samueldeandrade8535
@samueldeandrade8535 3 ай бұрын
Ok, my proof was correct and I freaked out for nothing.
@samueldeandrade8535
@samueldeandrade8535 3 ай бұрын
Christ, give me patience to write a proof here!
@samueldeandrade8535
@samueldeandrade8535 3 ай бұрын
Hummm. Very ... questionable. I could get mad criticising this video, but I guess I am too old. I will just leave this here: I will use "ext" for sup or inf. Then ext A satisfies an inequality x * ext A * b (★), for all x in A, for all b * bound, meaning IF ext = sup, then * = ≤ and b is upper bound IF ext = inf, then * = ≥ and b is lower bound Also, txe A will denote the other guy and ° will denote the other inequality symbol. Ok. Take μ≠0 (μ will be my lambda, I can't write lambda) and some * bound b for μA This means μx * b, for all x in A Let s=sign of μ, then x (s*) b/μ, for all x in A So, b/μ is an s* bound for A, with s* = *, if s=1 (μ>0), s* = ° , if s=-1 (μ0), sext = txe , if s=-1 (μ0, μ ext A = ext μA if μ
How to Learn Analysis Effectively
14:05
DiBeos
Рет қаралды 4,5 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
What are Dimensions in Mathematics?
15:41
DiBeos
Рет қаралды 4,6 М.
The Blind Mathematician Who Became the World's Greatest
16:31
Newsthink
Рет қаралды 282 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 219 М.
How Would You Prove That?
11:38
DiBeos
Рет қаралды 1,1 М.
Chernobyl Visually Explained
16:40
Higgsino physics
Рет қаралды 2,4 МЛН
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 15 МЛН
10 weird algorithms
9:06
Fireship
Рет қаралды 1,3 МЛН
The Core of Linear Algebra
18:56
DiBeos
Рет қаралды 16 М.
НИКОГДА не иди на сделку с сестрой!
0:11
Даша Боровик
Рет қаралды 729 М.
(✋❌)kageihina VS siajiwoo VS meosimmyyt VS oxzung#tiktok #shorts
0:12
Что такое дагестанский кирпичный завод!
0:53
АВТОБРОДЯГИ - ПУТЕШЕСТВИЯ НА МАШИНЕ
Рет қаралды 746 М.
ТЕЛЕФОН МЕНЯЕТ ЦВЕТ😅 #upx
0:34
RanF
Рет қаралды 639 М.
Satisfying Vend 😦 Ep.5 #shorts #satisfying #vendingmachine
0:23
TYE Arcade
Рет қаралды 17 МЛН