Рет қаралды 36,713
Diffusion models are powerful generative models that enable many successful applications like image, video, and 3D generation from texts.
In this tutorial, I share my understanding of the diffusion model basics, including training, guidance, resolution, and speed.
Below are some other great resources to learn more about diffusion models.
===== Slides =====
Here are the slides used in this video
Training: bit.ly/3WudEPH
Guidance: bit.ly/3wedCky
Resolution: bit.ly/4bqxHmo
Speed: bit.ly/4bpJzoJ
===== Tutorials =====
[CVPR 2022 Tutorial] Denoising Diffusion-based Generative Modeling: Foundations and Applications
cvpr2022-tutor...
[CVPR 2023 Tutorial] Denoising Diffusion Models: A Generative Learning Big Bang
cvpr2023-tutor...
[A short course by DeepLearning.AI] How Diffusion Models Work
• How Diffusion Models W...
===== Training =====
[Sohl-Dickstein et al. 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics
arxiv.org/abs/...
[Ho et al. 2020]: Denoising Diffusion Probabilistic Models
arxiv.org/abs/...
[Luo 2022] Understanding Diffusion Models: A Unified Perspective arxiv.org/abs/...
[Karras et al. 2022] Elucidating the design space of diffusion-based generative models
arxiv.org/abs/...
[Karras et al. 2023] Analyzing and Improving the Training Dynamics of Diffusion Models
arxiv.org/abs/...
===== Guidance =====
[Dhariwal and Nichol 2021] Diffusion Models Beat GANs on Image Synthesis
arxiv.org/abs/...
[Ho and Salimans 2022] Classifier-Free Diffusion Guidance
arxiv.org/abs/...
[Sander Dieleman 2022] Guidance: a cheat code for diffusion models
sander.ai/2022...
[Sander Dieleman 2023] The geometry of diffusion guidance
sander.ai/2023...
===== Resolution =====
[Ho et al. 2021] Cascaded Diffusion Models for High Fidelity Image Generation
arxiv.org/abs/...
[Saharia et al. 2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
arxiv.org/abs/...
[Rombach et al. 2021] High-Resolution Image Synthesis with Latent Diffusion Models
arxiv.org/abs/...
[Vahdat et al. 2021] Score-based Generative Modeling in Latent Space
proceedings.ne...
[Podell et al. 2023] SDXL: Improving Latent Diffusion Models for High-resolution Image Synthesis
arxiv.org/abs/...
[Hoogeboom et al. 2023] Simple diffusion: End-to-end diffusion for high resolution images
arxiv.org/abs/...
[Chen et al. 2023] On the importance of noise scheduling for diffusion models
arxiv.org/abs/...
[Gu et al. 2023] Matryoshka Diffusion Models
arxiv.org/abs/...
===== Speed =====
[Song et al. 2021] Denoising Diffusion Implicit Models
arxiv.org/abs/...
[Salimans and Ho 2022] Progressive Distillation for Fast Sampling of Diffusion Models
arxiv.org/abs/...
[Meng et al. 2023] On Distillation of Guided Diffusion Models
arxiv.org/abs/...
[Song et al. 2023] Consistency models
arxiv.org/abs/...
[Luo et al. 2023] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference
arxiv.org/abs/...
[Luo et al. 2023] LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
arxiv.org/abs/...
[Sauer et al. 2023] Adversarial Diffusion Distillation
arxiv.org/abs/...
[Yin et al. 2023] One-step Diffusion with Distribution Matching Distillation
arxiv.org/abs/...