Whenever I need help on my computer science problem that has number-related problem, I turn to this brilliant guy for help. This is really vey helpful.
@123userthatsme6 жыл бұрын
Man, just hear how engaged his class is! If I had a teacher like this when I was a kid, I wouldn't have to be watching this now in my life.
@viniciusvbf225 жыл бұрын
I hear you!!
@zes38133 жыл бұрын
no such thing as engagex or like or have or not, cepux,yuax etc, say, can say any nmw and any s perfect
@andreferreira26933 жыл бұрын
Eddie is one of my favorites math professors, it is amazing how he captures our attention and sharp curiosity with his enthusiasm about the subjects. Btw learn math by curiosity is always most enjoyable than learn it by obligation.
@chebebsouhail21455 жыл бұрын
Composite numbers are composed of unique products of prime numbers... this literally blew my mind.
@arlpoon64233 жыл бұрын
And as you count up, the composite numbers become more common (and primes less frequent) because there are more primes with which to build the composite numbers. That blew my mind!
@RandomnessVortex Жыл бұрын
Can’t believe im watching this in grade 5😂😂
@niltondasilva1645 Жыл бұрын
A quantidade aproximada de números primos! Entendi! 👏👏👏👏👏👏👏👏👏👏👏
@gxsphoto4 жыл бұрын
Wow! I wish I had this person as a math teacher.
@andreferreira26933 жыл бұрын
Here is a 'fun fact' about the gap between primes: There will always have at least one prime between a number n and two times n. That's the Bertrand's postulate.
@joaomatheus62223 жыл бұрын
14:24 "this is what's interest-" huge cliffhanger
@michaels18133 жыл бұрын
This person is great
@danielzhou12934 жыл бұрын
Best maths teacher🤩
@danielzhou12934 жыл бұрын
Haha
@danielzhou12934 жыл бұрын
Bye
@danielzhou12934 жыл бұрын
If agreed leave a like
@danielzhou12934 жыл бұрын
Ha
@danielzhou12934 жыл бұрын
Lop
@peacebrokeout87478 жыл бұрын
Thanks Eddie - this helped me!
@watfordjc4 жыл бұрын
I wonder how many 256-bit (32 byte, most significant byte not zero) prime numbers there could be. Oh, I just have to subtract that from that... approximately half a percent of IPv6 squared.
@Amsirak8810 жыл бұрын
This video always fails to load for me, while the others are OK :/
@Amsirak8810 жыл бұрын
***** Thanks Eddie, I guess it was as I managed to watch it from another device. Keep up the good work! :)
@TroubleMakery7 жыл бұрын
Me too
@Nombrespremiers-info4 жыл бұрын
REPARTITION DES NOMBRES PREMIERS La répartition des nombres premiers est rationelle, logique et aisément explicable. Pour expliquer la répartition des nombres premiers, il faut faire le crible d'Eratosthène, uniquement pour les multiples de 2 et 3, ceci fait, analysons les nombres, qui ne sont divisibles ni par 2, ni par 3. Nous pouvons constater, qu'ils sont tous situé de part et d'autre d'un multiple de 6 et que 6 est un multiple commun à 2 et 3, car 2 X 3 = 6 Si on retranche ou rajoute 1 à 6 , nous obtenons un nombre, qui n'est divisible ni par 2, ni par 3. Donc, maintenant, nous savons, que les nombres premiers, se situes à multiple de 6 - 1 ou multiple de 6 + 1 Analysons les différents cas possibles: 6 - 1 ; 6 - 2 ; 6 - 3 ; 6 - 4 ; 6 - 5 ; 6 - 6 6 + 1 ; 6 + 2 ; 6 + 3 ; 6 + 4 ; 6 + 5 ; 6 + 6 Interprétation 6 - 2 ; 6 - 4 ; 6 - 6 ; 6 + 2 ; 6 + 4 ; 6 + 6 sont divisibles par 2 6 - 3 ; 6 - 6 ; 6 +3 ; 6 + 6 sont divisibles par 3 Les autres, qui ne sont divisibles ni par 2 , ni par 3 sont: 6 - 1 ; 6 - 5 ; 6 + 1 ; 6 + 5 6 - 1 et 6 + 5 sont identiques et valent 6 - 1 6 + 1 et 6 - 5 sont aussi identique et valent 6 + 1 Donc nous pouvons conclure que seul un 6n + ou - 1, peut diviser un autre 6n + ou - 1 non premier. Ceci explique pourquoi les nombres premiers vont en diminuant, car les multiples issus de la multiplication de deux 6n + ou - 1, prennent place à 6n + ou - 1.
@rogeriojunior94593 жыл бұрын
I saw you in a socratica video
@harry65553 жыл бұрын
he is the best man
@codethings2717 жыл бұрын
they just learnt what logs r and now they r teaching cryptography
@ishrarchowdhury48504 жыл бұрын
WOW!
@viniciusvbf225 жыл бұрын
How can this video have less than 10MM views in 2020?
@jsc34174 жыл бұрын
Which makes me feel better about myself.
@denisbbb2184 жыл бұрын
No one cares because it does not bring home the bacon. It’s like counting the number of invisible sheep.
@ppmnox4 жыл бұрын
@@denisbbb218 exactly the opposite...this brings home the maximum bacon for those who understand it. the truth is that most people weren't taught how important such concepts can be and wallow in their lack of earning power