Thank you Mike!! After going through so many videos, I can now finally understand how the two axis interplay. Well done!
@mikexcohen14 жыл бұрын
Awesome.
@godsart37693 жыл бұрын
Great explanation - exactly what I was looking for to fill in some gaps in my knowledge. You did some of the experiments I was curious about. Thanks.
@BaillehachePascal Жыл бұрын
I spent hours looking at other videos or web pages to try to understand why my implementation of the 2D FFT didn't work, and finally that's your video which clarified everything ! Thank you so much !!!
@mikexcohen1 Жыл бұрын
Awesome :)
@johnlovesmath8 ай бұрын
Dr. Mike, your linear algebra book is so good. The sections on SVD and intro PCA are explained so well. This video just answered my question too, thanks for all you do.
@mikexcohen18 ай бұрын
Awesome, thank you! 🥰
@josefhrdlicka225129 күн бұрын
Thank you for the interesting video! The link for the code stopped working tho. Hope I can reproduce it from the video atleast.
@tsehayenegash839410 ай бұрын
Thank you to upload this video. I have a question. how can I evaluate Phase and Amplitude at a given temperature data?
@mszawerd Жыл бұрын
But why when calculating 2D transform we are first calculating transform for columns, and then transform for rows of the previous result? Why this works? Why we are not calculating transform for columns, and for rows of the input image and then adding it together like in calculating 2D derivative?
@gaiuspliniussecundus1455 Жыл бұрын
So, when you transform to frequency space, you loose the ability to, e.g., edit a single pixel in the spatial domain. Because you decorrelated the pixels into freq and phase components?
@mikexcohen1 Жыл бұрын
yes, correct. The frequency domain encodes the spatial frequencies that are distributed over the pixels, not the pixels themselves.
@saimadhavp6 жыл бұрын
Mike , Your videos generally hits the bulls eye. Focusing on extremely critical parts and its nuances of overall concepts, which generally is missed by others. I am looking for little more info on how to elicit out Frequencies and amplitudes from the resultant matrix output. Whether it is DFT ot FFT. Can you provide further pointers.
@mikexcohen16 жыл бұрын
Thanks, Saimadhav. Getting amplitude is fairly straight forward: just take the magnitude of the Fourier coefficients (MATLAB function abs() ). Slightly trickier is knowing which frequencies you want to extract. The easiest way is to create a Gaussian to produce a low- or high-pass filter (depending on whether you set the Gaussian to be 1 or the non-Gaussian parts to be 1). A narrowband spatial filter would be a ring in the 2D Fourier space. Mike
@fr48645 ай бұрын
Bro you’re the goat! Great explanation 🫡
@mikexcohen15 ай бұрын
Thank you, kind internet stranger :)
@berkeberkeme47155 жыл бұрын
Could you please tell how to obtain the frequency of a cartesian point on fouriered image in matlab
@scott1pb1wow1epic2 жыл бұрын
This is amazing, great explanation, was able to give some intuition about something unintuitive (to me)
@mikexcohen12 жыл бұрын
Thanks :)
@JiffyJokes2 жыл бұрын
I applied the 1D fft in matlab by using fft(X, [ ], 1) for an FFT of the 7x7 matrix to get the values like at 1:24 but I get different results
@dapper-alienАй бұрын
Same here, off by a significant figure for some reason... padding?
@aayush7404 жыл бұрын
I have a 512 x 81 matrix in matlab. The matrix represents a image. There is clutter in the image. How do I generate image from that matrix and remove the clutter??
@itWouldBeWise4 жыл бұрын
When you say at 2:07 that for images the DC frequencies are shifted to the center, is that just for displaying the frequency spectrum? Or is it necessary for using it e.g. to apply a gaussian filter convolution via the convolution theorem?
@mikexcohen14 жыл бұрын
Both: Shifting the spectrum facilitates interpretation, and it makes it easier to construct a frequency-domain Gaussian for filtering. But the shifting is not necessary in either case.
@QuyetNguyen-sg9dq3 жыл бұрын
how to do match between input image and template image? if I use FFT
@INCYTER2 жыл бұрын
Thanks for this - Much appreciated. Well done, and well explained!
@mikexcohen12 жыл бұрын
Glad it was helpful!
@georgeevans13416 жыл бұрын
How can I get the matlab code used in the video? What tool box is required ?
@mikexcohen16 жыл бұрын
My apologies for the missing code. I added the link in the description. No toolboxes are required, and it will work in MATLAB and in Octave.
@subhashiskar4403 Жыл бұрын
I want he code for python. If not then MATLAB is ok. Actually I want to build something like this in my final year project.
@prasadradhika5 жыл бұрын
Nice video. Could you please tell how to obtain the frequency in 2D Fourier transform spectrum in Python?
@mikexcohen15 жыл бұрын
Hi Radhika. The concept is the same. Some of the syntax is a bit different, but hopefully easy enough to translate. The 2D FFT in Python would be np.fft.fft2(image)
@ciqgmuokefzzyslew25803 жыл бұрын
Excellent video
@muhammadfikriarifardi72516 жыл бұрын
I am sorry , its just me or to hear you I need a bigger speaker
@hasansheikhfaridul19835 жыл бұрын
Thanks Mike
@husseinalsajer43813 жыл бұрын
hello , lease can you tell me how can I do space domain in python to show image ?please
@mikexcohen13 жыл бұрын
The syntax in Python is a bit different from that in MATLAB, but the principle is the same. You can use scipy.fft.fft2 for the 2D Fourier transform, and then use plt.imshow to visualize the results.
@Victor-lc3pw4 жыл бұрын
Спасибо!
@冯亮-h4g4 жыл бұрын
nice works,我喜欢
@mikexcohen14 жыл бұрын
谢谢!
@lillinda24284 жыл бұрын
thank you so much : )
@mikexcohen14 жыл бұрын
You're welcome!
@binhu19962 жыл бұрын
@Archturian88802 жыл бұрын
Sorry I think in the middle should be high frequency, not low frequency.
@brandoneickert10 ай бұрын
The middle corresponds to the DC component, or zero Hz (low frequency). In a 1D FFT, think of how the middle (the y axis) is low frequency as well - same concept