Short and simple. I like the way you explained the KNN in simple words.
@AssemblyAI2 жыл бұрын
Thank you!
@nizamuddinshaikh3185 Жыл бұрын
Implementing KNN is so easy? That was my first thought after I saw this video. Really the way, it is explained and shown here is remarkable. It not only shows KKN but also how powerful is plain Python when used sensibly with library like Numpy. The entire idea is very useful for beginners like me. I am now AssemlyAI subscriber. I am going to not only see but follow along all videos of this playlist in order to get better understanding of Python, Numpy, Pandas and DataScience. Thank you AssemblyAI for sharing.
@Brandonator24Ай бұрын
fun fact, for the distance between points in KNN, you can omit the square root portion of the euclidean distance function for efficiency. Square root function is monotonic, so it if a < b then sqrt(a) is also < sqrt(b).
@l4dybu92 жыл бұрын
This is the best series to learn ML. 🎓🔥🔥 Imma recommend it to all my ml enthusiast friends ✌🏻
@AssemblyAI2 жыл бұрын
Thank you!
@johanriedel2 жыл бұрын
The free course is appreciated, but I have trouble understanding some of the terms and the thoughts behind certain functions.
@mbmathematicsacademic70386 ай бұрын
short and simple ,no complications
@bakhtiarrasheed99522 жыл бұрын
Great tutorial, I also added tie-breaking functionality in case tie occurs in most frequent label.
@philtrem Жыл бұрын
Very easy to follow after I created my own implementation. Very similar to my own implementation, except I elected to use a priority queue to keep track of the k nearest, instead of sort (because having to keep track of indices was a pain, and it was getting late). Coded mine in C# without third party libraries. I like that numpy offers a argsort method here, comes in handy.
@semrana19864 ай бұрын
wonderfully done with a lot of clarity
@OmarAmil Жыл бұрын
Short and simple, Thank you very much
@AssemblyAI Жыл бұрын
You're very welcome!
@emir51469 ай бұрын
I don't understand that why we add terms that '[0][0]' to the list of most_commons? 8:04
@stanvanillo98319 ай бұрын
The counter returns the sorted count of all possible outcomes, i.e. a list of tuples and each tuples has the label and the count, (label, count). You only want the most common one, i.e. the first element in the array and you only want the label, not the count, i.e. you want the first element of that tuple which is also accessed by using [0]. Therefore you need to apply [0][0].
@Franshpsv11 ай бұрын
I like to follow this course from Lesson 1, what is the link that i need to start here?
@IgorKuts Жыл бұрын
Nice and concise. Love it.
@takasurazeem Жыл бұрын
How can I plot the graph again to see if it turned those blues into the green?
@youssefelamrani79052 жыл бұрын
good job, I like it, KNN doesn't well with images i believe right?
@cherpysara10 ай бұрын
I am getting error no module NAMED KNN .... pl help to resolve this problem.
@luis96xd2 жыл бұрын
Whoa, excellent video! It was well explained, thanks! 😁😁👍🤩
@AssemblyAI2 жыл бұрын
You're very welcome :)
@mrarsenal10vn Жыл бұрын
I love this tutorial so much
@AssemblyAI Жыл бұрын
Awesome!
@alexandergarzo94152 жыл бұрын
Please explain in more detail every line code.
@andrea-mj9ce2 жыл бұрын
What about the regression case?
@KarthickKenny. Жыл бұрын
There is no regression in knn it is a classification algorithm
@andrea-mj9ce Жыл бұрын
@KarthickKenny. One can apply KNN when the response variable is continuous
@KarthickKenny. Жыл бұрын
@@andrea-mj9ce you have to apply regression algorithm in that case not knn
@emir51469 ай бұрын
Thank you abla
@sedwares Жыл бұрын
Great video!
@AssemblyAI Жыл бұрын
Glad you enjoyed it
@imadsaddik Жыл бұрын
Thank you for sharing
@AssemblyAI Жыл бұрын
Thanks for watching!
@derickkwame6148 Жыл бұрын
great simple tutorial but how do i plot a graph with the knn?
@ge_song54 ай бұрын
wow, she knows her stuff.
@tejasrathi6359 ай бұрын
How did you visualised the data ?
@youssefzaim7163 Жыл бұрын
great excahnge ndiro niya
@esmailsayid2976 Жыл бұрын
amazing job
@urielcalderon16612 жыл бұрын
Thank you
@AssemblyAI2 жыл бұрын
You're very welcome :)
@SantiagoGomezVideos2 жыл бұрын
Great video! Thnk you for making it. Got this error in Colab. ModuleNotFoundError: No module named 'KNN' when running from KNN import KNN
@AssemblyAI2 жыл бұрын
You're welcome Santiago! You should include the KNN python file we develop in the video in the file system of the collab notebook. That should get rid of the error! :)
@1000marcelo10002 жыл бұрын
Amazing!
@abheermehrotra329 Жыл бұрын
how to setup my machine with all these libraries ???
@jonforhan9196 Жыл бұрын
pip
@Code_Catalysts10 ай бұрын
numpy error in vscode???
@AbdellahEnajari21 күн бұрын
👌👌👍👍👍👍
@tebibusolomon15293 ай бұрын
i love you
@FearFlicks-ue6exАй бұрын
There is no teacher on this planet that can explain python, machine learning in a proper sequence and an entertaining way. I don't know what is she doing in this video. Also, she is not explaining whatever she is typing all that Chinese stuff.
@systemforge Жыл бұрын
nice
@sidekick3rida Жыл бұрын
How to implement knn from scratch… import numpy and sklearn ¯\_(ツ)_/¯
@orioncloud46972 жыл бұрын
Thx, however, this euclidean distance function needs to be corrected.
@osviiii2 жыл бұрын
It's actually ok I'd say
@orioncloud46972 жыл бұрын
@@osviiii yeap i checked that, i just confused a little
@firstlast-wz9jv Жыл бұрын
thank you for the practice... but it's an exact copy from this one kzbin.info/www/bejne/pJivqotracpkgrc created 4 years ago
@AssemblyAI Жыл бұрын
Yes! Pat works with me too, we decided to do a new run of his videos :)
@lalalalaal72092 жыл бұрын
Are you Turkish
@AssemblyAI2 жыл бұрын
Yes!
@dostseferoglu6853 Жыл бұрын
@@AssemblyAI that "i" in range pronounciation gave it away :D
@KemalDirican-f2o2 ай бұрын
Lewis Brenda Walker James Jackson Charles
@GeorgeZoto Жыл бұрын
I like this approach, it is so helpful. Curious how it compares with sklearn's version of sklearn.neighbors.KNeighborsClassifier 😃
@michaelduffy5309 Жыл бұрын
I went through all of these Assembly AI lessons, making each one work perfectly. Then I redid each one using Scikit Learn classes. In every case, I was able to drop in the sklearn equivalent and get the same or better results. A good entree into Scikit Learn.