Table of Contents: (I'm sorry, I messed up the audio and am talking pretty loud) Problem Introduction 0:00 - 1:57 The "3 Keys To Backtracking" 1:57 - 4:55 The FULL Recursion Walkthrough For "boat" 4:55 - 22:57 Time & Space Complexities 22:57 - 27:53 Wrap Up / Conclusion 27:53 - 28:18 This is super long because of the walkthrough...I'm sorry. Here is a good example of the code: javarevisited.blogspot.com/2015/08/how-to-find-all-permutations-of-string-java-example.html (If this link doesn't work then you can find the code anywhere, just know the concepts and you can implement it however you want, but I really should have walked through that code snippet. I will try to this in a later video, this is my fault.)
@jaseharold31193 жыл бұрын
pro trick: you can watch series at flixzone. Me and my gf have been using them for watching lots of of movies lately.
@samirmanuel89443 жыл бұрын
@Jase Harold Yea, been using flixzone} for since december myself =)
@DED_Search3 жыл бұрын
He is one of the few people on KZbin who actually elaborate the concept of backtrack clearly. Great job!
@optimizedpran12474 жыл бұрын
I want to get "No More Decisions To Make Backtrack" tattooed on my arm after this.
@BackToBackSWE4 жыл бұрын
hahaha same
@ElGalloUltimo5 жыл бұрын
11:51 "I feel like a robot right now" :) But you are not a robot, so it is exhausting for a human being to do this. It's amazing how much simpler the actual code is than doing it manually yourself. It is one of the most powerful examples of why computers are useful. Despite all that, I *really* appreciate you putting yourself through that on video because it fully and completely demonstrates the intuition behind the code.
@BackToBackSWE5 жыл бұрын
sure thx
@sushmithasnataraj51224 жыл бұрын
Who else feels that this channel deserves more subscribers?
@BackToBackSWE4 жыл бұрын
It does alright. The growth rate is good. It can be faster and we haven't gone on to create "viral" content. Since November I've been mostly coding and not focused on growing the channel. Between December 2018 and November 2019 I only made niche programming question videos and they operate like a library. A library is stable and grows slowly. The channel still operates like a library and not an active mechanism of rich media generation. If we made media that could scale to capture more people (less technical, talk about salaries or something which is a hot, attractive topic) we would grow exponentially. I am well aware where we stand and what the KZbin is as well as where it can go. Entities on the internet can deserve things, but attention distribution is not fair and follows the pattern of natural selection with a great bit of unfairness.
@sushmithasnataraj51224 жыл бұрын
@@BackToBackSWE I love the content on this channel. Do you know what makes this channel different from the rest? You guide us through the approach and you don't explain the code. After watching the video I can code in like 5 minutes and I will never forget the solution. Thank you so much for all the videos and keep making quality voices. 🙂
@debdutsaha43163 жыл бұрын
Also I think so @Sushmita S Nataraj
@jasasul81644 жыл бұрын
I've never had so much fun watching an educational video, the backtracking steps explanation is so great Love your attitude, your persnoality and you explain things so well Great Video
@BackToBackSWE4 жыл бұрын
thx
@lianghe14014 жыл бұрын
You are just so good at explaining those sort of ideas! The beauty of is I don't have to finish the video to get your idea. I stopped the video at 5 minutes and able to go back and resolve my problem.
@BackToBackSWE4 жыл бұрын
great to hear!
@milkthecode73694 жыл бұрын
Man, great job with that explanation on the whiteboard. Having a mental model for this problem is hard enough, but explaining each step and having to make all those edits into a video must've been really tough. Thanks for your hard work!
@BackToBackSWE4 жыл бұрын
nice - thx
@vishalcelestine86544 жыл бұрын
Not the teacher we deserve, but the teacher we need..hats off !!!
@BackToBackSWE4 жыл бұрын
thanks haha
@bronzebond4869 Жыл бұрын
outstanding job dude. Over a year and i still go back to this
@mdsumon-ee5ke3 жыл бұрын
"exhausted all possibilities of x, no more backtrack"!!. Love your effort man, really. I finally understood backtracking! Yeah, I needed explanations 24 times! thank you :)
@bhushanshinde83584 жыл бұрын
Love ur energy n enthusiasm to get to depth of a problem rather than just solving the problems... Good job!
@BackToBackSWE4 жыл бұрын
sure
@yangyu44894 жыл бұрын
love the ENERGY my guy - earned a sub
@BackToBackSWE4 жыл бұрын
thx
@akn43365 жыл бұрын
Write a code to count number of “now”s in this video! 😂 Just kidding, good tutorial
@BackToBackSWE5 жыл бұрын
I say that a lot. Weird mannerism. I can't control them....well I could consciously try...eh...whatever
@AlexBonillas4 жыл бұрын
Time complexity for that proposed "and now"-count Algorithm is the same as this permutations Algorithm.... also kidding of course, this is a good tutorial
@anujagrawal604 жыл бұрын
Generally i don't comment, but dude this explanation is exceptional.I never understood string permutations this better. great work
@BackToBackSWE4 жыл бұрын
welcome to commenting lol & thx
@richduchin40985 жыл бұрын
dude...keep it up! I could care less about the negative comments, ignore them. As a very seasoned software engineer, company founder, and exceptional teacher, I can safely say you have described this in the most laymen way possible. Excellent! Would love to connect with you and discuss a couple of things. Reach out to me on linkedin
@BackToBackSWE5 жыл бұрын
This video is old haha, are the comments bad? I don't notice. I just respond to the stream that hits my notification bell. I don't use LinkedIn much, maybe email me? backtobackswe.com/contact
@NB192735 жыл бұрын
Amazing explanation very clear! I did a masters (1 year conversion course) in Computer Science and they never even mentioned the concept of backtracking so this is very helpful thanks.
@BackToBackSWE5 жыл бұрын
sure
@tmorid33 жыл бұрын
You are great!!! 1 important thing - please put links to the previous videos of yours that you are referring to. It would really help. thanks!!
@LeafNBlade5 жыл бұрын
Amazing explanation, I have a interview coming up and i will keep this in mind for any permutation problem!
@BackToBackSWE5 жыл бұрын
love
@faisalsal15 жыл бұрын
Jeez, I thought he is going to write a code :(
@BackToBackSWE5 жыл бұрын
Here Is My Response: backtobackswe.com/im-sorry Github: github.com/bephrem1/backtobackswe/issues/1
@pranavverma23973 жыл бұрын
best lecture for this question on the entire KZbin
@debanjanasantra67243 жыл бұрын
Appreciate the enthusiasm to explain all the 24 combos !!
@RahulKumar_gr84 жыл бұрын
There's a difference between understanding something and being able to make others understand the concept. Great job ! I Understood the concept of backtracking to a great extent.
@BackToBackSWE4 жыл бұрын
great
@JN-wj5tj4 жыл бұрын
ha ha! The artistic license with backtracking in the video is cute. The jumpiness of the video get's a little much. However, overall, the language used is clear and that makes understanding the approach easily understood ! Well done!
@BackToBackSWE4 жыл бұрын
"The artistic license with backtracking in the video is cute." what and yeah sorry old video. and nice, surprising this one was rough, and thanks
@HeWhoShalNotBeNamed_4 жыл бұрын
huge respect for such massive amount of efforts exerted. very much appreciate them! for a beginner in recursion, very very helpful.
@BackToBackSWE4 жыл бұрын
sure
@supremoluminary4 жыл бұрын
Thanks for that. I would like to see a code walkthrough next.
@BackToBackSWE4 жыл бұрын
sure
@biniyamasnake97565 жыл бұрын
Good video. Learned the theory. It would have been nice to SEE the code and discuss tradeoffs of the different ways of programming the backtrack algorithm which is what I wanted but I like how you mentioned some of those ways.
@BackToBackSWE5 жыл бұрын
Yeah. I realized this after I did it. Check this out: github.com/bephrem1/backtobackswe/issues/1 I will give this code and maybe do another video.
@sim777787775 жыл бұрын
One of the best tutorials I have ever seen. Great job
@BackToBackSWE5 жыл бұрын
Thanks
@PatteeGreen2 жыл бұрын
You're addictive to watch, incredibly entertaining, and amazingly informative. Thanks!!
@BackToBackSWE2 жыл бұрын
thank you. means a lot. Would love some feedback on the free 5 day course - backtobackswe.com/
@BangMaster963 жыл бұрын
This must have been exhausting to film.
@trestenpool90454 жыл бұрын
The code was tricky to wrap my head around. This helped very much, thank you!
@mridulmittal59535 жыл бұрын
never seen this much energy ! thanks dude
@BackToBackSWE5 жыл бұрын
I'm a wild guy
@pasankalansooriya31244 жыл бұрын
Very attractive teaching style.good job sir
@BackToBackSWE4 жыл бұрын
thanks
@kylenelandenberger64824 жыл бұрын
This is awesome. I totally understand it better than before. I am having a hard time putting this into recursion though. do you mind making the code live again?
@BackToBackSWE4 жыл бұрын
Thanks and the repository is deprecated - we only maintain backtobackswe.com now.
@duhudu5 жыл бұрын
Thanks sir, first 4 minutes and got the idea how to solve it.
@BackToBackSWE5 жыл бұрын
nice
@shubhamjindal92145 жыл бұрын
exactly same here ....! watched the video till 4:07 mins
@BackToBackSWE5 жыл бұрын
@@shubhamjindal9214 haha nice
@yicai74 жыл бұрын
You are my Prof. Thanks for the awesome vid! Voted!
@BackToBackSWE4 жыл бұрын
sure
@vinnygouda27504 жыл бұрын
Take a bow.......my brother what an effort
@BackToBackSWE4 жыл бұрын
ye
@kevinjaypatel3 жыл бұрын
you are awesome, I watch a lot of your videos for help!
@jeongtaebang36795 жыл бұрын
For time complexity, can you please explain beyond the fact that there are n! permutations that need to be computed? I think the number of recursion calls is more than that, but not sure how to formally count this (also not sure if interviews will ask for that level of mathematical formalism)
@BackToBackSWE5 жыл бұрын
The recurrence for generating permutations recursively is: T(n) = n * T(n-1) + O(1) where we just print the permutation (we don't copy a string to an answer list or anything). In each call, we will make n calls and n will reduce in size by 1. Each call will do at worst O(1) work. If n = 4 then we will see it concretely solves to n * (n - 1) * (n-2) * (n-3) where T(1) is a base case entailing a print. Does this make sense?
@minirasamedova6483 жыл бұрын
I like how passionate you are about teaching ^^ thank you very much for the video !!
@rodolfom.r91462 жыл бұрын
Wow dude i had seen lot of tutorial but yours its the most amazing , clear and comprehensive ,thanks for take the time to do this , im subscribed now , greetings
@wl74975 жыл бұрын
Great job! so for array permutation problem, the time complexity should O(n!), space complexity is O(n), n is the size of input array.
@BackToBackSWE5 жыл бұрын
Which version?
@gregoryrobertson3 жыл бұрын
I really enjoy learning from you, thank you for posting this.
@dhee013 жыл бұрын
Yoo.Thanks my man.This was really helpful.
@Justin-cn3qu5 жыл бұрын
I just wanna say, great job.
@BackToBackSWE5 жыл бұрын
thx
@andrejivanovic89895 жыл бұрын
this is dope you're doing a great job, keep it up
@BackToBackSWE5 жыл бұрын
a lot of work ahead this year
@sergeivashchenko73085 жыл бұрын
Great job man, you are really good at explaining
@BackToBackSWE5 жыл бұрын
thanks!
@Geopoliticalguy-z8n Жыл бұрын
Is there any alt of recursion. Seriously this recursion is killing me...😢😢
@maximilianokalaydjian74523 жыл бұрын
Amazing video! You're really helping me to crack the coding interviews!
@saravanansarangan70355 жыл бұрын
Great explanation bro hats off for your patience
@BackToBackSWE5 жыл бұрын
ok
@pradeexsu4 жыл бұрын
thank you sir for great job. : ) plz make tutorial on the case when reapting char are there in string without reapting permutation like "Boom". it printed twice. how to avoid this reaptation without using "HashMap" and "Set".
@BackToBackSWE4 жыл бұрын
ok
@jazzbandpiano3 жыл бұрын
the question is, how do you transfer your "running string" down the call stack without making a deep copy of it each time? Requires some trickery...
@chenchen556885 жыл бұрын
I'm wondering if the time complexity is calculated as the total number of function calls, it would be exactly the number of nodes been traversed in the "tree." So that would be counted in such manner(from top of the tree, each term represents the number of nodes on each layer): N + N(N-1) + N(N-1)(N-2) … + N(N-1)(N-2)…(3) + N(N-1)(N-2)…(2) + N!, and this gets to e*N! as N gets large. Please correct me if I'm wrong. Thanks!
@BackToBackSWE5 жыл бұрын
I'm not fully clear on the format of what you are summing
@chenchen556885 жыл бұрын
@@BackToBackSWE this might be clear imgur.com/a/dkUb8V1
@iggykarpov4 жыл бұрын
Watching this at 0.75 speed seems pretty good. :)
@BackToBackSWE4 жыл бұрын
thx sorry old vide
@aleyummusic5 жыл бұрын
Posting the code for this would be helpful
@BackToBackSWE5 жыл бұрын
github.com/bephrem1/backtobackswe/issues/1 ;)
@riaagnes3535 жыл бұрын
Can you provide the code? I could not find the link.
@BackToBackSWE5 жыл бұрын
yeah, it's been open on the github for a while as an issue
@user-zd1hj2lv3n4 жыл бұрын
When recursion makes that gym membership pay off 😂 Great explanation. Thanks
@BackToBackSWE4 жыл бұрын
wut
@snoopaku4 жыл бұрын
Great explanation, thank you so much! I have a question about the space complexity when we just print our permutations. The worst case is when we reach the bottom of our recursion and that would be O(n) because of n stack frames, I get it. But every stack frame also has its current state, I mean current permutation, which is also of length n in worst case. Am I right? Shouldn't space complexity in this case be O(n*n) = O(n^2)? Thanks a lot!
@BackToBackSWE4 жыл бұрын
Yes, that would be the case, but if you pass a reference to a single mutable string (maybe make your own char array) you can keep the space linear (no copies in each frame of a whole structure).
@snoopaku4 жыл бұрын
@@BackToBackSWE Yeah, you're right, thank you!
@airysm3 жыл бұрын
Is your old github repo with the solutions still available or is that behind Backtobackswe.com now?
@frozen_tortus4 жыл бұрын
These permutations kind of remind me on generative recursion. Backtracking, I learn is for search? This bothers me sometime now.
@BackToBackSWE4 жыл бұрын
ye
@beverlyukandu71894 жыл бұрын
Suggestion: Try to stand on the opposite of the board you are writing. It's tough sometimes to take notes when you are standing directly in front of what you wrote out. Great job otherwise.
@BackToBackSWE4 жыл бұрын
ok
@krishnakrmahto975 жыл бұрын
"No more decisions to make, backtrack" - this one was nice though.. :P
@BackToBackSWE5 жыл бұрын
thanks
@afeaddeh22034 жыл бұрын
If we used a StringBuilder instead of a Strings would the time efficiency be O(n!) and not O(n *n!)? I think that with StringBuilder we can just append the 'choice' in each frame instead of deep copying the String?
@BackToBackSWE4 жыл бұрын
Im not sure I dont remember
@VinodKumar-pf1un4 жыл бұрын
what if the string length is 50 or something. Is there any way to calculate all the permutations in an efficient way for that case ?
@BackToBackSWE4 жыл бұрын
I'm not sure
@ridhwaans5 жыл бұрын
what does a naive solution to this look like? without backtracking
@BackToBackSWE5 жыл бұрын
As in an iterative approach? How would you brute force generating permutations?
@fantasy99602 жыл бұрын
wow thank you for such a great video!
@ZachWalz5 жыл бұрын
In your example, how would I figure out that “obat” is the 8th permutation without writing out all possible permutations that came before it?
@BackToBackSWE5 жыл бұрын
So our original string will be "boat" . I immediately know that in the 1st slot the "b" will go first with a remainder of "oat", then the "o" with a remainder of "bat", then the "a" with a remainder of "bot", then the "t" with a remainder of "boa". That is what the first positioning will yield. So...4! = 24. We know that we will have 24 total permutations (for reasons I think this video explains...I did this a while back so not sure). So go back to what I was saying...."b" will go first with a remainder of "oat". With "b" in slot 1 (and 3 remaining slots)...I know for sure that I will be able to reap 6 permutations. Why? Well...3! = 6. So ok....we know that the 7th permutation will start with the "o" placed in the first slot with a remainder of "bat". So from there we can just do the enumeration and get there faster... We hopped to the 7th...and that is: o b a t _ _ _ _ If you followed this whole explanation then you should have a deeper understanding of what is happening.
@KrishnaKumar-jr7qq3 жыл бұрын
7:55 felt like watching Edge Of Tomorrow. LOL! But its great !!
@eve79475 жыл бұрын
What if there are duplicate elements in the array, how do you avoid generating duplicate array for the answer?
@BackToBackSWE5 жыл бұрын
We could just put the permutations in a HashSet but then again there is probably a smarter way to prune the placements going downwards. Reminds me of: leetcode.com/problems/subsets-ii/ I'll think on this.
@CodeSuccessChronicle3 жыл бұрын
you're DS god 🙏🙏🙏 love from India ❤
@backtobasics68654 жыл бұрын
it would be good, if you can explain wrt code
@BackToBackSWE4 жыл бұрын
yeah
@saruncse855 жыл бұрын
Nice Explanation. Thank you.
@BackToBackSWE5 жыл бұрын
sure
@penj43693 жыл бұрын
Love the energy !
@juniorcoder69885 жыл бұрын
GREAT !!! I liked your lectures !
@BackToBackSWE5 жыл бұрын
thanks
@rndmvds97654 жыл бұрын
Here's my question. What if there is repeating letter in a string?
@BackToBackSWE4 жыл бұрын
I don't remember but these's a way
@roeekimmelАй бұрын
At 11:00 I definitely could feel the mental struggle
@melaniemeza21394 жыл бұрын
You are awesome!!
@BackToBackSWE4 жыл бұрын
thx
@dernyt-tpe4 жыл бұрын
A big thank you 😊
@BackToBackSWE4 жыл бұрын
sure
@ponrajkumarp67774 жыл бұрын
how is space complexity O(n*n!) when we store in an array. we are storing the result so it should take O(n!). can you please explain. Thanks for the explanation.
@BackToBackSWE4 жыл бұрын
I don't remember this to be honest
@namanmishra37784 жыл бұрын
Well, I guess n! is for the permutation purpose and n to print each permutation so that makes it O(n*n!). Not sure!!
@ponrajkumarp67774 жыл бұрын
@@namanmishra3778 Yea Whatever you are saying is for time complexity. but my doubt is about space complexity dude
@akashm1034 жыл бұрын
why boat with 24 permutation , why not cat with 8 permutation, would have made your job easy.......... but hats off to your energy
@BackToBackSWE4 жыл бұрын
I don't remember this video too much in detail, old video, bad mic, I was loud
@adityamaurya80924 жыл бұрын
Can we solve this problem without recursion
@BackToBackSWE4 жыл бұрын
yes, but I don't remember how its coded. you can probably find a solution online
@kuralamuthankathirvelan5 жыл бұрын
Very Clear explanation , Thanks a lot bro . Looking for more DP videos .
@BackToBackSWE5 жыл бұрын
sure
@JOHNSMITH-ve3rq2 жыл бұрын
Definitely can't say 'do you even lift bro?' to this guy
@saurabhdeshpande84504 жыл бұрын
woahh....great energy man!!
@BackToBackSWE4 жыл бұрын
old video - sorry
@242deepak4 жыл бұрын
If you would have not erased and drawn full recursion tree the understanding would have been better
@BackToBackSWE4 жыл бұрын
yes
@norenpotsangbam70934 жыл бұрын
Thanks bro really helpfull
@BackToBackSWE4 жыл бұрын
Sure
@arvindk48134 жыл бұрын
Good job Bro!
@BackToBackSWE4 жыл бұрын
thx
@PARUS19784 жыл бұрын
Every time I listen your video I think need to set playback speed to 0.75%
@BackToBackSWE4 жыл бұрын
sorry - old video i understand
@abdelrahman23485 жыл бұрын
What is the difference between this problem and 6.9 in aziz's book ?
@BackToBackSWE5 жыл бұрын
what was 6.9? I don't have the book up with me rn. I had to wipe my hard drive (had issues) and I'm setting shit back up again now...so yeah...I assume it is the same problem using an array? A string is an abstraction, it is an array of characters. It is a sequence. Any sequence can be permuted.
@abdelrahman23485 жыл бұрын
Back To Back SWE it’s okay and thanks for your attention...the problem of chapter 6 number 9 is Give an array A of n elements and a permutation p, apply p on A.. this part is easy to implement but the point is he said in the book any permutation can be viewed as a set of cyclic permutations for each element in the cycle how’d you identify if it has been permuted ..I didn’t understand what does it mean
@BackToBackSWE5 жыл бұрын
@@abdelrahman2348 OHHHH, just pulled it up. Not it is not the same. And yeah, I just read the "Hint: Any permutation can be viewed as a set of cyclic permutations. For an element in a cycle, how would you identify if it has been permuted?" For this problem they say "A permutation can be specified by an array P". This is different from what we call a permutation in this problem. A permutation in that context is the codification of final positions for items. The "Hint" is that each permutation represents a series of interlinked steps to get all elements to their final positions so that O(1) space can be used (since it is trivial to perform the repositionings into a new array). These interlinked swaps form a series of "cycles" where we must swap an element in...then swap the element that sat where we just swappped into its final place...and so on... That is an odd way of saying it but yeah...that's the gist of it.
@abdelrahman23485 жыл бұрын
@@BackToBackSWE Thank you, but I still can't figure out it the permutation cycle , could you discuss it later in a video ?
@BackToBackSWE5 жыл бұрын
@@abdelrahman2348 possibly
@atlantean.prince3 жыл бұрын
I like this guy
@abudibro2003 жыл бұрын
Didn't know alexandre lacazette was a software engineer
@VeereshPradeep5 жыл бұрын
Man there's some problem with this video. It just gets stuck buffering after first 20 seconds.
@BackToBackSWE5 жыл бұрын
hm
@ezpz4akash5 жыл бұрын
Seriously Man 😵
@BackToBackSWE5 жыл бұрын
@@ezpz4akash yuh
@Luka-se7sl4 жыл бұрын
Thanks God, that in word `boat` is 4 letter and not 5
@BackToBackSWE4 жыл бұрын
yeah
@sanjivmadhavan57055 жыл бұрын
man checking abs often:")
@BackToBackSWE5 жыл бұрын
wat
@chandraprakashsingh10395 жыл бұрын
while writing the code you are looping over l to r but in helper fuction u will pass l+1 not i+1 like your rest of the backtracking videos.