I really like this integral

  Рет қаралды 27,742

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 67
@farfa2937
@farfa2937 2 жыл бұрын
When I have a child I'll tell them the natural numbers go: 1, one over pi squared times the integral from 0 to infinity of the natural log squared of x over squared root x times one minus x all squared, 3, 4, and so on.
@jadonjones4590
@jadonjones4590 2 жыл бұрын
What about 0?
@farfa2937
@farfa2937 2 жыл бұрын
@@jadonjones4590 It's not natural
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
@@farfa2937 Depends. In some parts of maths, it's considered to be a natural number, in others, it isn't.
@farfa2937
@farfa2937 2 жыл бұрын
@@bjornfeuerbacher5514 Yeah there're exceptions to every rule, but I didn't feel it was necessary since it was just a joke...
@Walczyk
@Walczyk 2 жыл бұрын
dont
@goodplacetostop2973
@goodplacetostop2973 2 жыл бұрын
0:40 Lemma 5:03 Main result 18:15 Good Place To Stop
@jkid1134
@jkid1134 2 жыл бұрын
14:03 Fake homework
@CTJ2619
@CTJ2619 2 жыл бұрын
Thanks!
@richardstone5096
@richardstone5096 2 жыл бұрын
Really nice integral, it's always cool when you can use sums to help solve integrals.
@عمرانآلعمران-و7خ
@عمرانآلعمران-و7خ 2 жыл бұрын
In the last step we could not use the geometric series, instead we can visualize the integral as a second derivative of beta function which involves some digamma function values.
@Vladimir_Pavlov
@Vladimir_Pavlov 2 жыл бұрын
1. Replacement in the original integral t=lnx. We get (the given multiplier 1/π^2 will be taken into account at the end): ∫ (from -∞ to ∞) t^2*e^t*dt/(1-e^t)^2. (1) We divide this integral into two (from -∞ to 0) and (from 0 to ∞). In the first one, we do the replacement t→-t. After simple transformations (1) is reduced to the form ∫ (from 0 to ∞) t^2*[e^(-t/2) +e^(-3t/2)]*dt/[1-e^(-t)]^2 = (*) 1/[1-e^(-t)]^2 = - e^t * d/dt [1/(1- e^(-t))] =- e^t*d/dt[1+∑(n from 1 to ∞) e^(-nt)]= =∑(n from 1 to ∞) n*e^[-(n-1)t]. (*) = ∑(n from 1 to ∞) n*∫ (0 to ∞) t^2*[e^(-(n-1/2)*t)+e^(-(n+1/2)*t)]. (2) 2. Using Feynman's trick, we obtain that if J(a)=∫ (from 0 to ∞)e^(-at)dt =1/a, a>0, then ∫ (from 0 to ∞)t^2*e^(-at)dt = d2J(a)/d2a = 2/a^3. (3) From (2) taking into account (3) (for a= n-1/2 and a=n+1/2) we get 2*∑(n from 1 to ∞) n*[1/(n-1/2)^3+1/(n+1/2)^3]= = 8*∑(n from 1 to ∞) {[(2n-1)+1]/(2n-1)^3+[(2n+1)-1]/(2n+1)^3} = 8*∑(n from 1 to ∞) {[1/(2n-1)^2+1/(2n+1)^2 +1} =16*∑(n from 1 to ∞) 1/(2n-1)^2 =16*(π^2/8)=2*π^2. Answer: 2*π^2/π^2=2.
@orionspur
@orionspur 2 жыл бұрын
16:20 "That's because all numbers are either even or odd." Homework lemma. :)
@manstuckinabox3679
@manstuckinabox3679 2 жыл бұрын
Beautiful Timing just as I'm taking real analysis, plus I've never heard of an even irrational, emphasis on never heard.
@manstuckinabox3679
@manstuckinabox3679 2 жыл бұрын
@@orionspur exactly, the question isn't very well-defined, the lemma, imo, might go like this: for all { x ; x belongs to Z), (X is even xor X is odd). can be done with basic first-order, or even just propositional.
@manstuckinabox3679
@manstuckinabox3679 2 жыл бұрын
@@orionspur I think zero is fairly even though, it can’t be written in the form, 2k+1... but then again that depends on the set of axioms that define odd-ness. Edit: It really depends on the field we’re working in.
@guilhermepimenta_prodabel
@guilhermepimenta_prodabel 3 ай бұрын
The most beautiful integral I've ever seen!
@manucitomx
@manucitomx 2 жыл бұрын
I just love it when after a long trek through math you end up with 2. Thank you, professor.
@6612770
@6612770 2 жыл бұрын
Hahaha. Reminds me of times in high school when I would write out a full page of work on solving an integral, only to end up with the value of Zero. I remember always remarking to myself : "Gosh, I did all of that work for Nothing..." 🙂
@Noam_.Menashe
@Noam_.Menashe 2 жыл бұрын
I did the same thing except I substituted sqrt(x) before the integral because I didn't want to deal with fractions in the denominator (It doesn't change much at all).
@emersonschmidt7882
@emersonschmidt7882 2 жыл бұрын
As others said, it's always nice when geometrical series and stuff like that shows up in integrals.
@romajimamulo
@romajimamulo 2 жыл бұрын
3:45 it might be my minor color blindness, but the yellow and orange are hard to tell apart EDIT: Later on it was easy to tell, must have been a lighting issue in that shot
@scp3178
@scp3178 2 жыл бұрын
Agree. Michael's yellow looks like a lightgreen (yellowish) to me. But that could be a color difference between the video cam and the final edited video.
@kmlhll2656
@kmlhll2656 2 жыл бұрын
A very nice demonstration.
@minwithoutintroduction
@minwithoutintroduction 2 жыл бұрын
رائع كالعادة. واصل يا أستاذ.احتراماتي.
@The1RandomFool
@The1RandomFool 2 жыл бұрын
In my attempt before watching the video, I used contour integration twice. The first time was a half circle in the upper half plane (and avoiding the origin) to put this integral in terms of a different integral, but quite similar. The second was a proper evaluation of that with a keyhole contour. I think the square root in the denominator made this easier to evaluate.
@timotejbernat462
@timotejbernat462 2 жыл бұрын
13:18 forgot to write the integral sign for the sum term, which made it really hard to follow that step and the next, the rest is very well put together
@aidarosullivan5269
@aidarosullivan5269 2 жыл бұрын
Should have put 1/(2 п^2) before the integral ig.
@bl8r1ner
@bl8r1ner 2 жыл бұрын
Makes me think of Rube Goldberg machine. Very nice solution.
@KundanKumar-oh8qb
@KundanKumar-oh8qb 2 жыл бұрын
Today this question appeared in my test
@dorong3232
@dorong3232 Жыл бұрын
Heres a nice question- What irrational numbers have a continuous simple fraction expansion {a0,a1,a2,a3,...} So that their decimal representation b0+b1/10 + b2/100+.... Is such that b0=a0, b1=a1, b2=a2,.... What about any other representation? (Binary, hex,...)
@hypergraphic
@hypergraphic 2 жыл бұрын
Nice video!
@jyotisingh4109
@jyotisingh4109 2 жыл бұрын
Great video sir
@Patapom3
@Patapom3 2 жыл бұрын
Love it!
@wolfmanjacksaid
@wolfmanjacksaid 2 жыл бұрын
Gradshteyn and Ryzhik anyone? I wonder if the Integral Suggester knows this book. Bought it for my grad level modeling class and barely cracked it since. Some of the integrals had no closed-form solution as indefinite integrals, only as definite. Really interesting stuff!
@bezobrazie7607
@bezobrazie7607 Жыл бұрын
Wolframalpha said that answer is 1.57.....
@manstuckinabox3679
@manstuckinabox3679 2 жыл бұрын
Hiya Doc! It always fascinates me, but how do you know which lemma, or tool each integral requires? I mean, not you specifically, but how does one know?
@spearstip9812
@spearstip9812 2 жыл бұрын
After playing around and reaching the point where for example you have int{ x^a ln(x) dx} you calculate it then and once you find the answer you rewrite the problem in a more presentable fashion. It's rare to know a priori what you need to solve a problem like this :b
@leekon_
@leekon_ 2 жыл бұрын
5:01 no1 can tell me that that isnt a good transition
@ubncgexam
@ubncgexam 2 жыл бұрын
It's a very "easy" way to calculate 1+1. 😂😂😂
@ericthegreat7805
@ericthegreat7805 2 жыл бұрын
So technically the goal integral is 2pi^2? Can this be related to Gaussian functions?
@gennarobullo89
@gennarobullo89 2 жыл бұрын
I dont get why if x=1/y, then later y turns back to an x
@rocky171986
@rocky171986 2 жыл бұрын
Dummy variable
@jkid1134
@jkid1134 2 жыл бұрын
This maybe provides a bit of clarity: go to like 8:17 and imagine substituting x=t into the left integral and y=t into the right integral. Now you can add them together, and even just work the whole thing in t if you want to. The variable of integration can be changed to anything, since it never appears in the final result. It is like the k in summations you often see, simply used to index some set, a "dummy variable"
@dodokgp
@dodokgp 2 жыл бұрын
Spoiler alert : the answer is the only prime number that can be written as the sum of two cubes ;)
@hypergraphic
@hypergraphic 2 жыл бұрын
I guess that generalizes all the way up right? 1^n + 1^n = 2?
@UltraMaXAtAXX
@UltraMaXAtAXX 2 жыл бұрын
Thumbnail lacks pi-squared.
@goodplacetostop2973
@goodplacetostop2973 2 жыл бұрын
Then the answer is 2π 😂
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
@@goodplacetostop2973 Or rather 2π². ;)
@Keithfert490
@Keithfert490 2 жыл бұрын
@@bjornfeuerbacher5514 no, there's a pi in the thumbnail; it's just not squared
@zahari20
@zahari20 2 жыл бұрын
Clumsy! To prove the lemma just differentiate inegral of x^a twice.
@bertrandviollet8293
@bertrandviollet8293 2 жыл бұрын
You're great
@pow3rofevil
@pow3rofevil 2 жыл бұрын
Para cuando un problema de Ramanujan ?
@mathunt1130
@mathunt1130 6 ай бұрын
To prove the lemma, note that x^a(log(x)))^2=d^2/da^2(x^a).
@michaelguenther7105
@michaelguenther7105 2 жыл бұрын
The lemma is easy by taking d^2/da^2 of the integral from 0 to 1 of x^a.
@Mathskylive
@Mathskylive 2 жыл бұрын
phương pháp tích phân từng phần chọn u, dv. Cảm ơn.
@nasim09021975
@nasim09021975 2 жыл бұрын
I want a T-shirt that says "... and that's a good place to stop" :D
@BridgeBum
@BridgeBum 2 жыл бұрын
Check his shop, he sells them helpfully translated into many languages.
@skylardeslypere9909
@skylardeslypere9909 2 жыл бұрын
For the first integral (the lemma), I first thought of Leibniz' Rule for integration, as d/da (x^a) = x^a ln(x), but that wouldn't work, as it would just increase the power of ln(x). However, then I integrated the expression in the lemma w.r.t. a two times, and I got the integral of x^a from 0 to 1, equaling 1/(a+1). Differentiating w.r.t. a two times again gives the correct result. My question is, how valid is this? I think we could argue that integration is just a fancy limit, meaning we could actually do this. But I'd love to hear a second opinion.
@khaledjebari1874
@khaledjebari1874 2 жыл бұрын
I ve sended u many requests of integrals Please can u do the one of the result zeta(3) Thanks in advance
@jesusandrade1378
@jesusandrade1378 2 жыл бұрын
The Maple Calculator gives the definite integral as 2π^2, so twice the value you got.
@leif1075
@leif1075 2 жыл бұрын
For heavens sake if YOU SONT KNOW the lemma or thst fsct can't you still solve the original with trying integration by parts..and or maube some u substitution like u is x minus 1 or u is ln x ..surely thst will work
@zzz942
@zzz942 2 жыл бұрын
Or just use complex analysis...
@pauldraghici8623
@pauldraghici8623 2 жыл бұрын
This is most likely none of my business, but is everything ok? You look very tired in the video.
the integral that Feynman('s trick) couldn't solve
17:39
Michael Penn
Рет қаралды 3,7 М.
One crazy looking integral
13:06
Michael Penn
Рет қаралды 37 М.
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН
An integral with many logs
16:02
Michael Penn
Рет қаралды 20 М.
an excruciatingly deep dive into the power sum.
16:45
Michael Penn
Рет қаралды 38 М.
Can you solve this integral?
19:56
Michael Penn
Рет қаралды 30 М.
A Fourier series of my favorite function!
15:11
Michael Penn
Рет қаралды 29 М.
check out the twist at the end of this integral.
20:39
Michael Penn
Рет қаралды 13 М.
This integral looks crazy
16:14
Michael Penn
Рет қаралды 41 М.
One of my favorite identities.
20:47
Michael Penn
Рет қаралды 28 М.
Can you guess the trick for this integral?
13:21
Michael Penn
Рет қаралды 30 М.
One of the most beautiful and powerful tools in mathematics!
13:50
Michael Penn
Рет қаралды 120 М.
You won't believe all the tricks for this integral!!
18:55
Michael Penn
Рет қаралды 29 М.