Implementing Word Embedding Using Keras- NLP | Deep Learning

  Рет қаралды 102,157

Krish Naik

Krish Naik

Күн бұрын

Пікірлер: 112
@krishnaik06
@krishnaik06 4 жыл бұрын
Steps To Follow 1. Sentences 2. One hot Representation-- index from the dic 3. Onhot Repre---> Embeddind Layer Keras To form Embedding matrix 4. Embedding matrix
@vinitkanse5703
@vinitkanse5703 4 жыл бұрын
How to decide the vocab_size ??
@BhupinderSingh-rg9be
@BhupinderSingh-rg9be 4 жыл бұрын
sir please include this part in which u write steps in notepad in every video, it feels easy to understand the code.
@mathavraj9378
@mathavraj9378 4 жыл бұрын
is the embedding layer values here formed by word2vec ?
@tararawat2955
@tararawat2955 4 жыл бұрын
how dimensions are decided for textual data...in your case what all features we have considered for each word..i mean on what basis we can decide dimension....
@DineshBabu-gn8cm
@DineshBabu-gn8cm 3 жыл бұрын
​@@vinitkanse5703 please explain me what is vocabulary.
@ijeffking
@ijeffking 4 жыл бұрын
I cannot thank you enough for this particular video. The length to which you have gone to explain Word Embeddings is highly appreciated. A world of Thanks.
@BrandoMalqui
@BrandoMalqui 9 ай бұрын
Thank you so much. I was having trouble understanding embedding which I need to implement for a model in one of my classes but you have made it very clear and easy to understand.
@arpitbaranwal7236
@arpitbaranwal7236 4 жыл бұрын
Thanks Krish for wonderful playlist.
@Gamezone-kq5sx
@Gamezone-kq5sx 2 жыл бұрын
The best than applied ai... Really best video ...
@googlecolab9141
@googlecolab9141 4 жыл бұрын
better explanation than Stanford CS224N: NLP with Deep Learning | Winter 2019 course. thank you sir
@spartacuspolok6624
@spartacuspolok6624 3 жыл бұрын
Your video helped me a lot to understand it and to start working as a beginner.
@debashisghosh3133
@debashisghosh3133 3 жыл бұрын
Awesome explanation Krish hats off...thnx a ton
@shaiksuleman3191
@shaiksuleman3191 4 жыл бұрын
You and Codebasics are 2 eyes in teaching.There are some many doctors ,only few will inject injection with out pain.
@gauravsahani2499
@gauravsahani2499 4 жыл бұрын
Thankyou so much Krish Sir, for this wonderful Playlist!, Learned a Lot!
@vivekbhat720
@vivekbhat720 3 жыл бұрын
Thankssss bro for putting such great effort in teaching.
@vibivij1948
@vibivij1948 4 жыл бұрын
Nice Video Krish...
@sir-lordwiafe9928
@sir-lordwiafe9928 3 жыл бұрын
Thank you Sir. Very very helpful.
@affandibenardi548
@affandibenardi548 4 жыл бұрын
it make sense and simple to understand thx bro
@enricowijaya8668
@enricowijaya8668 Жыл бұрын
AMAZING EXPLANATION, thank youu!!
@bhushanchaudhari378
@bhushanchaudhari378 4 жыл бұрын
Mind blowing explanation 🤙
@louerleseigneur4532
@louerleseigneur4532 3 жыл бұрын
Thanks Krish
@radhikapatil8003
@radhikapatil8003 4 жыл бұрын
Hi sir please suggest the face recognition CNN model..which is comparable with mobile face recognition
@maralazizi
@maralazizi 2 жыл бұрын
Thank you, it was a great explanation!
@praneethaluru2601
@praneethaluru2601 4 жыл бұрын
Literally my doubt got clarified...
@arjitdabral8449
@arjitdabral8449 4 жыл бұрын
Sir plz explain 1.) what were the features here according to which the vectors were created 2.) Where does the features come from can we use our own features
@nobalg3482
@nobalg3482 4 жыл бұрын
@Krish Naik, would love to have an answer to this..... Please can you explain this as well.
@tararawat2955
@tararawat2955 4 жыл бұрын
even I have the same question..Kindly answer @Krish
@hang1445
@hang1445 2 жыл бұрын
@Krish Naik I would like to ask the same question
@RitikSingh-ub7kc
@RitikSingh-ub7kc 4 жыл бұрын
Krish, can you explain some applications of nlp using lstm like next word prediction, translation and Image captioning ?
@kmnm9463
@kmnm9463 3 жыл бұрын
Hi Krish, Great video on Word Embedding. At 03:10 I think it is not one_hot which passes the values [2000, 4000, 5500] to Embedding layer. This is done by Tokenizer class from the same Keras. Tokenizer will create a dictionary of Words and their integer value - the length of the dictionary will be equal to total unique words in the corpus. Also one_hot is not efficient and after Tokenizer has come into the scene, one_hot is seldom used. from user - Krish ( my name shortened too is Krish :)
@sampaths4932
@sampaths4932 2 жыл бұрын
Good
@shamussim137
@shamussim137 4 жыл бұрын
This is so goodd!!!Thanks Krish
@rishikeshthakur6497
@rishikeshthakur6497 4 жыл бұрын
Your videos are really great sir. Hat's off you. Please, also make video on sentence embedding technique like infersent
@ramonolivier57
@ramonolivier57 4 жыл бұрын
You speak a little too fast in some section, but you explain everything very well. I still am missing understanding on "global average pooling". Thank you!
@EliRahimkhani
@EliRahimkhani Жыл бұрын
Great video! a couple of questions: how we can see these 10 features for each word? are the features the same? if not how the features are selected?
@sowmyakavali2670
@sowmyakavali2670 3 жыл бұрын
Krish , How the word embedding layer convert one hot encoding vector to fixed dimensional embedding matrix ? How the 10 k values converted into 300 values? Here we assume that one hot vector means its a sparse vector only , and is the embedding matrix also s sparse matrix or else dense matrix ? @KrishNaik
@User-nq9ee
@User-nq9ee 3 жыл бұрын
Hi very nice explanation, but we did not mention any feature but only feature size then how all those words got assigned dimension values. on what basis.
@infinitum90
@infinitum90 4 жыл бұрын
Krish, can u explain how index 6654 get converted to vector of 10 dimension vector, exactly what algorithm keras used to convert an index into vector .
@bhavinmoriya9216
@bhavinmoriya9216 3 жыл бұрын
THanks for the awesome video. Don't we need to fit before predict? If not, why?
@fidaullah3775
@fidaullah3775 4 жыл бұрын
Thanks for sharing video, but please also make video on LSTM
@lemoniall6553
@lemoniall6553 2 жыл бұрын
if we have a sentence "vishy eat bread". then we vectorize the word "eaat"(misspelled word), why does fasttext see that the word "eaat" is more similar to the word "eat"?. How is the architecture?, is it possible for fasttext without using skipgram to be able to classify words?. Thanks
@snagseeker
@snagseeker 8 ай бұрын
sir,how it is dividing row words and columns word why both rows and columns does't have same words ?
@sandipansarkar9211
@sandipansarkar9211 4 жыл бұрын
Thanks Krish once again
@theniyal
@theniyal 4 жыл бұрын
Can't you do the one hot representation with Tensorflow 'tokenizer and sequence' fucntion?
@ManelTIC
@ManelTIC 3 жыл бұрын
What is t'he relstion between embedding words and context window?
@cool_videos6016
@cool_videos6016 4 жыл бұрын
Hi krish, It was great video I am a beginner and I started seeing some projects on kaggle related to lstm I always had one doubt that is when to use a specific layer like in some projects they use two lstms they use dropout with certain value and these things are different in different projects and I get confused how did they choose these layers . I would request u to make a video on how can we know when to use a certain layer and why
@DineshBabu-gn8cm
@DineshBabu-gn8cm 3 жыл бұрын
I don't understand what vocabulary and vocabulary size are please some one explain. then what if our word is not in our vocabulary of 10 k. Please someone explain.
@Ankitkumar-qh6tx
@Ankitkumar-qh6tx Жыл бұрын
very helpful
@ahmedosama4973
@ahmedosama4973 4 жыл бұрын
Thnx sir I have one doubt for this ..what will be the benefit for the word representative is that we can predict sentience or what the advantages
@kalppanwala6439
@kalppanwala6439 4 жыл бұрын
Me waiting daily for Krish's videos be like me waiting for Money Heist Season 5 (aage kya hoga iss video ke baad) :)
@barax9462
@barax9462 3 жыл бұрын
Hello, im doing a project in which im not allowd to use AI librarries so, Can you pleaes explain this: - if i have an initial weight-matrix consisting of embeding matrix of size (300)x(|vocab_size| = 4k) and its filled with random values. And then we have an one-hotted sentence input of size say 3k sen = [0,0,0,0,157, 8, 900,100] etc.. my mian question is how to multply/dot-prodct the embedding-matrix with the sentence vector??? im really confused about this. should i convert the sentence vector into a matrix of size |sentence_vector| x embedding. or should just multply the indeices with the embedding matrix?????
@chandanbp
@chandanbp 4 жыл бұрын
How are we deciding no of features, what are those features exactly in the given problem?.
@krishnaik06
@krishnaik06 4 жыл бұрын
It is difficult to interpret..
@chandanbp
@chandanbp 4 жыл бұрын
@@krishnaik06 Or can you just give an analogy what those features could be
@patrickadjei9676
@patrickadjei9676 3 жыл бұрын
Please Explain Why your dimension is 10 when your set of features are 8. And why are you using a vocal of 10000 when your actual vocabulary is far less than 10000. Please explain.
@pulunghendroprastyo5868
@pulunghendroprastyo5868 3 жыл бұрын
Up
@cCcs6
@cCcs6 Жыл бұрын
Hello Krish, I have one question. I followed your tutorial and created those word embeddings. However, how can I fit them to a model (for example SVM) since they have a 3D-shape the model does not accept it. Thank you in advance, Christ
@muntazirmehdi503
@muntazirmehdi503 3 жыл бұрын
how do we set the vocab_size to 10k or any other number
@varunpusarla
@varunpusarla 3 жыл бұрын
How to decide the value for vocab size ?
@abdelhomi836
@abdelhomi836 3 жыл бұрын
At the very last part of your video can you do an inverse transform to your input for Semantical predictions instead of matrix prediction output?
@infinitum90
@infinitum90 4 жыл бұрын
Krish,thank you for the clear visualization but 300 dimension is the parameter but how keras embedding layer calculated the 300 values of vector.Pl. can u explain.
@suvarnadeore8810
@suvarnadeore8810 3 жыл бұрын
Thank you sir
@tanmoybhowmick8230
@tanmoybhowmick8230 4 жыл бұрын
Hey krish can you show some deployment of ml model ??
@mohamednajiaboo9817
@mohamednajiaboo9817 3 жыл бұрын
Thanks for the video. When we add the embedding we need to set the feature size. Here we set as 10. So how we the Keras know which of the 10 features need to be selected?
@Trouble.drouble
@Trouble.drouble 4 жыл бұрын
Krish is dictionary " is bag of words "
@krishnaik06
@krishnaik06 4 жыл бұрын
Dictionary are all the possible words
@Trouble.drouble
@Trouble.drouble 4 жыл бұрын
Then what is this Bag of words ji
@krishnaik06
@krishnaik06 4 жыл бұрын
Check my NLP playlist there I have explained
@Trouble.drouble
@Trouble.drouble 4 жыл бұрын
Sure sir 👍 I'll see thank you sir
@siddharthpandit2117
@siddharthpandit2117 4 жыл бұрын
why not padding added at the end. What changes if padding is at the end?
@SB-bu3xt
@SB-bu3xt 4 жыл бұрын
Sir make a video on step by step guide for beginners who wants to learn ML
@RAZZKIRAN
@RAZZKIRAN 4 жыл бұрын
actually one hot encoding is vector represation, again embedding layer converts to vector representaion?
@RAZZKIRAN
@RAZZKIRAN 4 жыл бұрын
confused ? do we need to converted one hot repesentation embedding layer?
@kmnm9463
@kmnm9463 3 жыл бұрын
Hi - I think No. Just use Tokenizer from Keras and pass it into the Embedding Layer. One Hot is not required. This is from a user ( my name too is Krish - so don't confuse with Krish(presenter - the great teacher). :)
@khangamminh512
@khangamminh512 3 жыл бұрын
Is the output of this with word2vec different in nature, guys?
@ameerhussain5405
@ameerhussain5405 4 жыл бұрын
Finally I understood the embedding layer!! I had gone through many tutorials but failed when I started implementing but with this one I came through. Can't thank you enough Krish!! I would like to add 1 point to your code if it helps any 1, if we could add a Flatten() layer after the embedding layer then we could add Dense() layers and make predictions say if we are doing text classification.This model wouldn't do any good in terms of accuracy. But this helped me build an intuition on shapes of the tensors and what happens to text when fed into a deep networks which is much difficult to visualise than what happens to images when fed into a CNN.(at least for me 😅)
@SameerSk
@SameerSk 4 жыл бұрын
instead of tf.keras.layers.Flatten() use tf.keras.layers.GlobalAveragePooling1D().
@suryanarayanan5158
@suryanarayanan5158 3 жыл бұрын
amazing
@mohdzaid6533
@mohdzaid6533 4 жыл бұрын
Sir how can I install tensor flow and keras package R ?
@rishabhvarshney2234
@rishabhvarshney2234 2 жыл бұрын
can you tell me how vocab = 10000, vocab means unique word in whole corpus write?
@wilman9206
@wilman9206 4 жыл бұрын
hi sir i wanted to know how can i search for the sentences using word embedding thanks in advance.
@maYYidtS
@maYYidtS 4 жыл бұрын
can anyone suggest to me....what if the text size more than 8 words we lose information right....is there any other way to overcome this problem?
@kaziasifahmed2443
@kaziasifahmed2443 4 жыл бұрын
plz can anyone tell me how did 100000 parameters are formed?? meaning what works behind 100000 parameters.10 dim *10000 voc size ? but why?
@sutopa8377
@sutopa8377 4 жыл бұрын
Hi Krish, Can you explain the concept of attention mechanism and please explain it in general, not related to encoder-decoder machine translation application.
@vinitkanse5703
@vinitkanse5703 4 жыл бұрын
How to decide the value of vocab_size ?
@krishnaik06
@krishnaik06 4 жыл бұрын
How many important words may be there in a dictionary?
@vinitkanse5703
@vinitkanse5703 4 жыл бұрын
@@krishnaik06 okay, but how do we differentiate between important words and other words? And I have one more doubt, In the video of word embeddings you said the "Embeddings are nothing but a feature representation " . So while implementing it (tf.keras.layers.Embedding) which features and what type of features and on what basis they are generated?? Like in the video there were gender , age ,etc (300 features) please look into my doubt, Thanks and Reagrds
@krishnaik06
@krishnaik06 4 жыл бұрын
Features things we cannot see as such...but based on the research paper it is how it is represented
@nobalg3482
@nobalg3482 4 жыл бұрын
@@krishnaik06 can you please refer to some research papers or make some video. I think you meant by 'we can;t see as such' is that one should thing this as an abstract idea happening behind the scenes; the system is creating and mapping features on its own?
@aartiahlawat8228
@aartiahlawat8228 4 жыл бұрын
@@krishnaik06 yes sir same doubt i am also facing
@rog0079
@rog0079 4 жыл бұрын
so whats the difference between word2vec, and this embedding layer provided by keras?, do they perform the same job>?
@noureddineghoggali9995
@noureddineghoggali9995 Жыл бұрын
Can you please make some tutorials on how to integrate the constraints in machine learning or deep learning? Thank you
@Maryamkhan-lo1hq
@Maryamkhan-lo1hq 3 жыл бұрын
Great explanation. one question what if we pass our dataframe which consist of 500 posts with label text instead of sentences, does it works?
@ADESHKUMAR-yz2el
@ADESHKUMAR-yz2el 3 жыл бұрын
how can dictionary have index? it is traversed by keys here we don't care about the position of elements , we call elements through keys regardless of its position. plz correct me if i am wrong , index of dictionary sounds confusing 😩
@anagham2413
@anagham2413 4 жыл бұрын
How can I convert more than 32 words?
@BharathKResu
@BharathKResu 4 жыл бұрын
Hey krish, can u guide us on NER, like resume parsing for example..
@MRaufTabassam
@MRaufTabassam 4 жыл бұрын
Did it work same for urdu?
@krishnaprasad-un3hy
@krishnaprasad-un3hy 4 жыл бұрын
Krish this is a wonderful explanation. I just wanted to know that, I have watched your previous three videos on NLP and i want to learn this technique from scratch. So, is that enough or we have other topics to cover?
@fineescape1257
@fineescape1257 2 жыл бұрын
Ifi watched this video and I don't understand, anyone has a suggestion of what I should watch first?
@chaitanyakulkarni6012
@chaitanyakulkarni6012 4 жыл бұрын
please do a video of installation of tensorflow for gpu i have same laptop as yours facing issues from a long time
@aaryannakhat1842
@aaryannakhat1842 4 жыл бұрын
which gpu do you have?
@biswajitroy-zp6lk
@biswajitroy-zp6lk 4 жыл бұрын
how to judge how many features to take
@akhilyeduresi8145
@akhilyeduresi8145 4 жыл бұрын
Hi Krish, Where Can I find Word2Vec and GLove implementation the same as above?
@pranayghosh1584
@pranayghosh1584 4 жыл бұрын
why need to pad each sentence before embedding?
@VijayKumar-bk5be
@VijayKumar-bk5be 4 жыл бұрын
Hey krish can u help us more videos by using system as well (practical)?
@mohsinimam2048
@mohsinimam2048 Жыл бұрын
Thanks!
@bilalhameed248
@bilalhameed248 3 жыл бұрын
voc_size=10000 dim=10 You did not explain these two variable clearly, why we consider dim=10 and voc_size=10000 please explain with some logic
@priyanshramnani1751
@priyanshramnani1751 4 жыл бұрын
Thank you! :)
@ravishankar2180
@ravishankar2180 3 жыл бұрын
your vocab size is hardly 50 and you have taken as 10000?? strange!
@tagoreji2143
@tagoreji2143 2 жыл бұрын
thank you so much Sir
Word Embedding - Natural  Language Processing| Deep Learning
15:10
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
A Complete Overview of Word Embeddings
17:17
AssemblyAI
Рет қаралды 114 М.
Embedding Layer Keras | Embedding as a Layer | Word Embedding
15:18
Knowledge Center
Рет қаралды 7 М.
Word2Vec, GloVe, FastText- EXPLAINED!
13:20
CodeEmporium
Рет қаралды 26 М.
Word Embedding and Word2Vec, Clearly Explained!!!
16:12
StatQuest with Josh Starmer
Рет қаралды 352 М.
244 - What are embedding layers in keras?
18:24
DigitalSreeni
Рет қаралды 22 М.
What are Word Embeddings?
8:38
IBM Technology
Рет қаралды 23 М.
Word2Vec Easily Explained- Data Science
22:50
Krish Naik
Рет қаралды 173 М.
What are Embedding Layers in Keras (11.5)
14:39
Jeff Heaton
Рет қаралды 35 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН