Hi all, thanks for the 500k subs! I will make a post of the winners of the secret giveaway tonight. After that I will be taking a break from YT.
@itislamin4 жыл бұрын
Congratulations
@punjabiguy12964 жыл бұрын
I am the second because first are u so can u give me heart
@integralboi29004 жыл бұрын
How long?
@punjabiguy12964 жыл бұрын
How long break??
@ggeorge024 жыл бұрын
I hope you have a nice break!
@ricsix2.06 ай бұрын
You got me here from the community post
@peternelson88764 жыл бұрын
Can't wait for part 3, I need that domain explanation!
@ganeshprasad98514 жыл бұрын
It's in the description 😂
@peternelson88764 жыл бұрын
@@ganeshprasad9851 oh damn you right, thanks 👍
@peternelson88764 жыл бұрын
kzbin.info/www/bejne/parCnIOvidinp80
@speedychicken8314 жыл бұрын
Nerd 😲
@Kero-zc5tcАй бұрын
Jjk has ruined me
@SeeTv.4 жыл бұрын
Will you explain why the domain is like that in another video?
@blackpenredpen4 жыл бұрын
It’s in part 3, see description for the unlisted videos
@angelmendez-rivera3514 жыл бұрын
Interestingly, if you have any quantity of the form a^(1/a), where a is positive and real, the corresponding power tower will always converge, because if for all such a not equal to e, a^(1/a) < e^(1/e), since at x = e, x^(1/x) attains its global maximum. So, despite the fact z^^♾ = a only converges if a < e or a = e, the power tower with z = a^(1/a) does converge. It just does not converge to a.
@thatnhoxiu4 жыл бұрын
wayt, how is this comment 5 days ago??
@timka32444 жыл бұрын
HOW 5 DAYS AGO????
@StreetfighterDucati14 жыл бұрын
It may not attain that maximum on an open domain, ie the extreme value theory might not hold. X=e is just a critical point
@dugong3694 жыл бұрын
If the tower doesn't converge to a, it still has to converge to y such that y^(1/y) = x = a^(1/a), so for a>e, the tower converges to the unique number y (between 1 and e) such that y^(1/y) = a^(1/a). This is the same unique number y such that y^a = a^y. In bprp's example a=3 and y = e^(-productlog(-ln(3)/3)) ~ 2.48 where productlog() is the name used for the Lambert W function on WolframAlpha. Note that 2.48^3 ~ 3^2.48
@angelmendez-rivera3514 жыл бұрын
thatnhoxiu The video was unlisted.
@monke42004 жыл бұрын
When are you going to post .. isn't your break over ? 😔
@spandanhalder99674 жыл бұрын
Currently it's 2 am here, and I don't know why I'm watching this at this solemn night, but still I'm enjoying Idk why.
@gastonsolaril.2374 жыл бұрын
You're probably one of my fav youtubers of the last 2 years, bro! Your work is awesome. I'm really passionate about maths and you just feed my hype! And in these days of quarantine and isolation, you and Dr. Peyam sometimes even feel like my "math friends"! Hey listen; have you ever thought about a good video series about Stochastic Calculus? I'm quite into it right these days! (financial markets and stuff). Just learned how to derive Black-Scholes' PDE. But I get lost when certain subjects such as Ito's integral or similar come around. It would be excellent if you play some of that sort of things! Long live BPRP!
@drpeyam4 жыл бұрын
This is brilliant 😉
@roberttelarket49344 жыл бұрын
I can't believe you've never seen this problem? I first saw it in 1968 as an undergraduate!
@angelmendez-rivera3514 жыл бұрын
For anyone who is curious, if you want to know what x^^♾ is equal to for any x in the domain, then notice that y = x^^♾, and x^^♾ = x^(x^^♾) = x^y. Therefore, y = x^y. To solve for y, take the natural logarithm here. We can do this because are assuming x is positive in this initial exercise. Hence ln(y) = y·ln(x), implying ln(y)/y = ln(y)·exp[-ln(y)] = ln(x), hence -ln(x) = -ln(y)·exp[-ln(y)]. If -ln(x) > -1/e or -ln(x) = -1/e, then the above equation implies W[-ln(x)] = -ln(y), where W is the Lambert W function, in this case, the principal branch of the W map. Therefore, y = exp(-W[-ln(x)]) = 1/exp(W[-ln(x)]) = 1/(-ln(x)/W[-ln(x)]) = -W[-ln(x)]/ln(x). The condition that -ln(x) > -1/e or -ln(x) = -1/e implies that ln(x) < 1/e or ln(x) = 1/e, which implies that x = e^(1/e) or x < e^(1/e), which agrees with what was stated during the video.
@angelmendez-rivera3514 жыл бұрын
Also, x < e^(1/e) implies ln(x) < 1/e, which implies -ln(x) > -1/e, which implies W[-ln(x)] > -1, which implies -W[-ln(x)] < 1. Therefore, -W[-ln(x)]/ln(x) = y < e, or equal to e if x = e^(1/e), which also agrees with what is stated in the video.
@timka32444 жыл бұрын
4 DAYS ago...
@angelmendez-rivera3514 жыл бұрын
Субс Тим The video was unlisted.
@samueldeandrade85355 ай бұрын
@timka3244 what a coincidence. 4 years ago you met the worst math content viewer and replied to him with the comment "4 DAYS ago..." Hahahahaha. Life is crazy.
@dan_was_here93282 жыл бұрын
I really like your channel. It is way more entertaining than the other math channels.
@nikitakipriyanov72604 жыл бұрын
Managed to got half of bounds. Namely, x^x^x^...=y means x^y=y, this solves using Lambert W function: y=e^(-W(-ln x)) (I've seen your other videos where you explain what is W and how to solve such equations). But, W(x) domain is x≥-1/e (there are two real branches: W₀ domain is [-1/e; ∞), with values in the range [-1; ∞), W-₁ domain is [-1/e; 0), with values in the range (-∞; -1], that's a multivalued function). This means, there must be -ln(x)≥-1/e, solving that for x gives x≤e^(1/e). Then, if I put that value into equation, I've got y = e^(-W(-ln x)) = e^(-W(-1/e) = e¯¹ = 1/e. Now I need to prove this is lowest possible value of y. Also still haven't figured out how to find out other bounds.
@nikitakipriyanov72604 жыл бұрын
I feel, we need to go from the definition of x^x^x^..., consider series f₀(x)=1, f₁(x)=x^f₀(x)=x, f₂(x)=x^f₁(x)=x^x, and so on, f_n(x)=x^{f_{n-1}(x)}, then define "power tower function" f(x) = lim f_n(x) for n→∞. Now we have to ask ourselves if this ever converges, and if it does, for which values of x? And this shoud give us all bounds.
@nikitakipriyanov72604 жыл бұрын
The solution x=f¯¹(y)=y^(1/y). Let's analyze this formula. It's derivative is df¯¹/dy = y^(1/y)(1-log(y))/y². For df¯¹/dy=0 we get y=e, x=e^(1/e). This is the maximum of the f¯¹(y), that's why when we put 3 in it we have some adequate value, which happened to converge our power series to something less that 3.
@HoldensBro3 күн бұрын
x=y^(1/y). The maximum point of this is x=1.44466786… substituting y=e, you can see that the result is the maximum. You can prove that y=e is the maximum by doing the derivative, which I won’t bother with here. Once y>e, you will see that x=y^(1/y) has two values of x.
@HoldensBro3 күн бұрын
It happens that the cube root of 3 is the same as 2.478^(1/2.478), so the power tower converges to 2.478 instead of 3
@Aldiyawak3 жыл бұрын
5:44 *technically speaking* Ah yes, the engineering approximation.
@TNTacdc4 жыл бұрын
Congratulations on 500k! Here's to 500k more!
@alexandrefrancoalcaraz93514 жыл бұрын
I'm a math hobbyist, I don't have advanced education in math, but I love them and I'm able to understand most of your videos (they're awesome). I have a question due to my ignorance: When you have a tower exponent of real numbers, it has to be solved up-to-down? I mean, the solution you give to x^x^3 only works if we solve the exponents up-to-down, and then the same answer fits to any x^x^x^...^x^3 form. Is it correct? Thank you very much in advance!
@balazscsillag64454 жыл бұрын
5:40 Engineering students don't know why, because π=e=3
@chhabisarkar90574 жыл бұрын
Lmao
@lakejizzio77774 жыл бұрын
We are using e=2.7 actually.
@黃子睿-q5o4 жыл бұрын
The worker's of Babylon estimate π more accurately than engineering students now! LOL
@rotabali53384 жыл бұрын
We use e equals to 2.8 only
@naseershaik58184 жыл бұрын
Congratulations for got 500k subscribers
@hydrostrikehd46614 жыл бұрын
It's fun to see this video before it's published.
@hydrostrikehd46614 жыл бұрын
Now it has been published lol
@itislamin4 жыл бұрын
How do you see these
@integralboi29004 жыл бұрын
ItIsLamin you can find them in playlists, he puts his unlisted videos in playlists before he publishes them.
@itislamin4 жыл бұрын
@@integralboi2900 oh
@nghiaminh77044 жыл бұрын
Hey, then what's the problem with tower(x) = 3 ? Is there any clear explaination without using the range of y?
@egillandersson17804 жыл бұрын
Half a million subscribers !!! Nice job !
@dushyanthabandarapalipana54924 жыл бұрын
Thanks !I wish you happy new year!
@ajinkya23444 жыл бұрын
500k hits. Congrats
@danielmendes29234 жыл бұрын
I got a idea. Since now you have 500k subscribes, do 500 integrals in one take to commemorate it. Who more agree with this? 😂
@cuonghienthaosonbuitrung28414 жыл бұрын
that's such a reckless idea. i have never heard it before. but if you want, then split it into many short videos
@adamkupczyk38264 жыл бұрын
Before using x^x^x^x... = 2 you should prove it exists.
@OCTAGRAM4 жыл бұрын
Infinite Power Tower was not explicitly defined as limit of finite power towers, so you are free to define it another way, as lim of x from 2 (good value) to 3. This is called continuation
@blackpenredpen4 жыл бұрын
OCTAGRAM Oh I mentioned about that in part 3.
@GreenMeansGOF4 жыл бұрын
The converging value is x=W_0(a)/a where W_0 is the principle branch of the Lambert W function and a=-ln(cbrt(3)). If I use W_(-1) instead, I get x=3 which does not make sense unless we somehow redefine convergence.
@mandeltownthekillerfrombab52022 жыл бұрын
All numbers go past sqrt(2) is considered as infinite. Therefore two equations are equal.
@anonymouslies4 жыл бұрын
A question is this concept releted to the Mandelbrot set? If yes then how? Also at 2:53 you forgot to add the doremon music Really dissapointed!! Great video tough.
@大大-u3m2 жыл бұрын
A monk carrying a shark🤙🏻🤙🏻
@roderickwhitehead4 жыл бұрын
Perfect followup.
@dugong3694 жыл бұрын
If x=a^(1/a) but the tower (x^x^x^x...) doesn't converge to a, it still has to converge to y such that y^(1/y) = x = a^(1/a), so for a>e, the tower converges to the unique number y (between 1 and e) such that y^(1/y) = a^(1/a). This is the same unique number y such that y^a = a^y. In bprp's example a=3 and y = e^(-productlog(-ln(3)/3)) ~ 2.48 where productlog() is the name used for the Lambert W function on WolframAlpha. Note that 2.48^3 ~ 3^2.48
@DanBurgaud4 жыл бұрын
Suggestion: Instead of using a whiteboard or blackboard, use a transparent glass. The setup would be you facing the camera and glassboard between you and camera. Obviously, camera will be recording all the writings backward. Then using software, convert/mirror the video. This way, you dont have to keep turning your head to look at camera (to look at the audience); you will always be looking at the audience while writing the equations.
@nicholasscott3287Ай бұрын
Downside is that you'd have to write baxk-to-front from your perspective to make it look right to the audience
@DanBurgaudАй бұрын
@@nicholasscott3287 Software will mirror it. There are some YT streamers doing exactly like this.
@younesabid54814 жыл бұрын
Isn't the infinite power tower a kind of tetration where the "exponent" approaches infinity? And btw, could you please make a video on the inverses of this operation? Namely the super root and the super log. And thanks!
@angelmendez-rivera3514 жыл бұрын
Yes, an infinite power tower is "equivalent" to x^^♾. Also, tetration to a fixed exponent only has one inverse map, in this case, the superlogarithm of infinite order, which is expressible in terms of the natural logarithm and the Lambert W function.
@timka32444 жыл бұрын
HOW 5 DAYS AGO
@cable47514 жыл бұрын
@@timka3244 they're probably members
@peterchan60824 жыл бұрын
Hey bprp, 4:38 - 4:58 . . . How do you prove this?
@blackpenredpen4 жыл бұрын
It's in part 3, you can see the video in the description : )
@cuonghienthaosonbuitrung28414 жыл бұрын
where are you now?
@pierreabbat61574 жыл бұрын
If I set x=3^(1/3) and evaluate a, x^a, x^x^a, ..., if a is in (0,3), then the sequence converges to some number between 2.45 and e. But if a>3, then the sequence goes to infinity. If a is just less than 3, the sequence decreases; 3 is an unstable fixed point. If I set y=e^(1/e) and evaluate a, y^a, y^y^a, ..., then e is a metastable fixed point. For a just less than e, the sequence converges very slowly to e, and for a just greater than e, the sequence diverges very slowly away from e, and eventually shoots off to infinity.
@yugarthsharma6264 жыл бұрын
Damn the video's real smooth ;D
@s4m1rza3 жыл бұрын
Hi, can you explain again please why the infinite superpower of x can be written as x^2?
@nahrafe2 жыл бұрын
Yo x^x^x^x... = 2 So because of x^(x^x^x^x...) = 2 We replace the never ending exponent with 2 as both are the same So thats it, x²=2
@s4m1rza2 жыл бұрын
@@nahrafe yh but because its infinite, doesn't that mean u could also write it as x^x^2 = 2, or x^x^x^2 = 2, and so on. Also when u tetrate sqrt2 to infinity, u don't get 2.
@mokouf34 жыл бұрын
Similar technique can be used for nested square roots/fractions equations.
@MathPhysicsFunwithGus2 жыл бұрын
Great video!!
@blackpenredpen2 жыл бұрын
Thanks
@Dreamprism4 жыл бұрын
Awesome follow-up to your other video!
@error_6o65 ай бұрын
Where do I get that chain chomp plush I need it
@52.yusrilihsanadinatanegar794 жыл бұрын
i forgot that this man was having a break
@davidgillies6204 жыл бұрын
Infinite power tower not to be confused with Tower of Power which is a Californian R&B band.
@黃子睿-q5o4 жыл бұрын
showing the existence of x^x^...... is very important.
@BTheBlindRef4 жыл бұрын
so what is that number that the tower of 3^(1/3) converges to? How do you solve for the value of such an expression?
@blackpenredpen4 жыл бұрын
See part 4 in the description
@MithuBhattacharyaMukhopa-gm4yb9 ай бұрын
I still dont understand it where it comes from,but the info is excellent
@boujdadyouness70844 жыл бұрын
the maths is amazing . I love the infinity
@alonilutowich45054 жыл бұрын
x^x^x^x... = 2 (1) Say both sides of the equations are the exponents of x x^(x^x^x^x....) = x^2 (2) plug in (1) into (2) x^2 = x^2 Therefore x can be equal to any number Which means 1^1^1^1.... = 2
@angelmendez-rivera3514 жыл бұрын
No, that doesn't mean x can equal any number, and it doesn't mean 1^^♾ = 2. If I have the equation x^3 = 2x^2, and I multiply by 0, I get 0x = 0x, which is true for all x. This does not mean x^3 = 2x^2 is true for all x.
@alonilutowich45054 жыл бұрын
@@angelmendez-rivera351 that's not the same thing as what I did, I can say 2x^2 and x^3 are both exponents of x so that x^(2x^2) = x^(x^3) and sure it adds one more solution of x = 1 but it doesn't mean it's any x. The answer to that is still 2 like the original equation with the remove of 0 as an answer due to the domain
@MercuriusCh4 жыл бұрын
hi, bprp! Wanna cool task? Just look at this: tg(sin(x)) or sin(tg(x)) which is bigger solve for x on interval (0; pi/100)? Have fun!)
@cobyambrose2915 Жыл бұрын
Mistake at 6:27 - the constraint should apply to y and not x.
@Codertyu4 жыл бұрын
How to find mirror image in co-ordinate system ,sir please
@markstahl52724 жыл бұрын
Sir, Rules of tetration say you must work "downward" from the highest exponent evaluating to the base. You are incorrectly working "upward", the wrong direction and will give a totally different value. How can the expression be evaluated if you can never start at the last exponent of an infinite tower power and work "downward"?
@blackpenredpen4 жыл бұрын
Hi Mark. Whenever we are dealing with infinity, we should do it in terms of a limit. In this situation, we should define the inf power tower as the limit of a sequence of the functions x, x^x,x^x^x,... For more details, please see part 3 in the description.
@阿巴阿巴-z5i4 жыл бұрын
Hello, Mr.Cao, can you do a video on volume of revolution in polar coordinate without using double or triple integral?
@ILoveMaths073 жыл бұрын
So that's his name?
@쉽게-q4r4 жыл бұрын
I have a Q. What is infinite series of epsilon?
@Ryan-gq2ji4 жыл бұрын
Is the derivative of ln(x!) lnx?
@sophanarato53734 жыл бұрын
Please help this integral (cos(2x) - cos(ax))/(cos(x) - cos(ax)) which (a) is a constant!
@digitalsnowfall19614 жыл бұрын
Hey , if i have a polynomial,should its factors also must be a polynomial ? Please answer
@ghotifish18384 жыл бұрын
I like the chain chomp microphone
@moregirl45854 жыл бұрын
Usual version I see don't say "you try (3^1/3)^... and get 2.4" but "you solve for 4 and get same result as 2"
@DANGJOS3 жыл бұрын
In fact, any ath root of a will be smaller than eth root of e except eth root of e itself.
@Yok_Knnn4 жыл бұрын
hey how are you? It’s been 2 months since you posted video last time. Are you OK?你还好吗?好久没看到你了!
@MeeraSingh-gn3ik4 жыл бұрын
Find the polynomial which when divided by a cubic polynomial gives a biquadratic quotient and a linear remainder
@perpetualrabbit Жыл бұрын
I am wondering: if you have an infinite power tower function f(x)=x^x^x^x..... you can write f(x)=x^f(x). But can you also write f(x)=f(x)^f(x) ? In the first case with x^x^x^x·.... you can never start evaluating the 'highest power' in the tower because the tower is infinite. But the second case is even worse: how do you even start figuring out what (x^x^x^...)^(x^x^x^...) means? The first tower is already infinite, so how can I stack the second on top of it? Do I just get x^x^x^x^..... again? If not, why not? I am confused.
@abrahamherzl99044 жыл бұрын
Plz since 4 years i wondered how integral 1/x=lnx can u make a video about it?
@blackpenredpen4 жыл бұрын
Not a proof but it’s kinda nice. twitter.com/blackpenredpen/status/1233863309562011648?s=21
@abrahamherzl99044 жыл бұрын
@@blackpenredpen lol i see... u proved it with a method that only can be true when the whole thing is already proved...so there is no proof after all?
@rachitjoon38114 жыл бұрын
Hi,bprp, can u explain why we can't integrate 1/dx
@Evan-ne5bu4 жыл бұрын
Bprp do you think you can do a video about the Bessel's differential equation and it's series solution?
@markklammerts47723 жыл бұрын
Nice. But… why does this reasoning converges to sqrt 2 for tetration and not for normal power from bottom to top (in which 3^3^3 would be 27)?
@Misteribel2 жыл бұрын
How can 3^3^3 be 27? If you mean not as normal power tower (without parens it’s top to bottom), but left-to-right evaluation, it’s (3^3)^3 = 27^3 = 19683. The other way around it’s 7625597484987. The sequence doesn’t converge to √2, but an infinite power tower (not tetration) of √2^√2^√2…. actually converges to 2.
@권영훈-l4f4 жыл бұрын
Very good!
@roberttelarket49344 жыл бұрын
This is an old problem I first saw as a teen in 1968!
@emanuellandeholm56574 жыл бұрын
Are you on vacation? :) Here's a nice integral for you: Let f(x) = sin(arctan(x)) tan(arcsin(x)). This looks kind of scary, huh? In fact the, integral of f(x) is nonelementary, so I suggest you try the integral of f^2(x) = sin^2(arctan(x)) tan^2(arcsin(x)) instead!
@lifemantras60994 жыл бұрын
Blackpenredpen should be change now into bluewhale
@rajkamal60624 жыл бұрын
Hey I want to ask u one question related to integration.While doing Integration of cos square x or sin square x why don't we use the simple linear Integration formula why we use formula of cos2x in doing their integration.please reply...
@RoMaths4 жыл бұрын
Big fan of you from INDIA🇮🇳
@liranzaidman16104 жыл бұрын
Who was the mathematician that proved those crazy thing?
@usptact4 жыл бұрын
The trick with color pen wouldn't work with any color. The trick only works for a specific range of colors.
@313bennyw34 жыл бұрын
Is it possible to do the integration of tan(cosx)dx?
@313bennyw34 жыл бұрын
I mean from 0 to 2pi lol
@parthkatke67064 жыл бұрын
What is your channel's profile photo about?
@soulsilencer18644 жыл бұрын
hey i love your videos. Can you find the maximum and minimum values of f(x,y)= (x^y)/(y^x) by using partial derivatives?
@ДометдеВоргес4 жыл бұрын
I don't get why it doesn't work with 3 if e=3=π 🤷♂️
@facitenonvictimarum4 жыл бұрын
He is a teacher. He does math for fun. He makes KZbin videos to make money and to sell merchandise. He is a typical KZbin money-hungry con man.
@nilaxibhoot28994 жыл бұрын
Heyy when will you upload ur next video?
@pocojoyo4 жыл бұрын
LOL, man. Dont you prefer a lapel microphone ? BTW Thanks for your videos
@blackpenredpen4 жыл бұрын
You’re welcome. I prefer my chain chomp or Pokéball mic : ))
@TheKannanmnj4 жыл бұрын
How to denote independent events on Venn diagram .
@alejandrodelabarra28384 жыл бұрын
Please! Use your incredible knowledge to solve "root locus" problems!!!
@gdash69254 жыл бұрын
can you compute productlog(2)
@rafaelb.3334 жыл бұрын
Hey, make a video with the proof that the numbers with form abcd... = a! + b! + c! + d! + ... are finite. Ex: 145 = 1! + 4! + 5! It could be interesting
@lakejizzio77774 жыл бұрын
I understand the math behind Solve 1 but If you use sqrt(2) in infinite power tower it goes to infinity? Why we can pretend it's sqrt(2) in this.
@はにわ-r7p4 жыл бұрын
They looks alike but we can’t solve one. How fantastic it is!! (I’m Japanese so I may make some grammatical errors.)
@pauljackson34914 жыл бұрын
You said, "they looks" It should be, "they look". This makes the noun match the verb; "they" is plural but "looks" is singular. What you said is still better than most stuff on Twitter though.
@saharhaimyaccov49774 жыл бұрын
Hi bprp .. can u slove the integral for (x⁵+1)^-1? ..please i cant slove it ..
@saharhaimyaccov49774 жыл бұрын
@blackpenredpen
@monikagulati37374 жыл бұрын
Hi I like your videos very much can u please explain through a video why derivative of lnx is 1/x
@coolmangame41414 жыл бұрын
does anyone remember when he said that he'll do x^x^x^x^... = 2017 next year in 2018 lol
@blackpenredpen4 жыл бұрын
I...... remember......
@jofx40514 жыл бұрын
Just realizing that it has no solution since y>e
@frankdominick2546Ай бұрын
You can write x^x^x^x^... = 2 as a 'limit." A reverse limit. lim (...(2^.5)^((2^.5)^((2^.5)^((2^.5)^(2^.5))))). Start from the right and work your way to the left. If you plug these values into your calculator one at a time, you will see that these values do converge to 2 after a while. So, x does in fact = (2^.5). The way you plug this into your calculator is: (2^.5)^(2^.5),.. then (2^.5)^Answer,.. (2^.5)^Answer,.. (2^.5)^Answer,.. and so on.
@gz49784 жыл бұрын
That's why x^^∞=2 and x^^∞=4 haven't the same result!
@Nylspider4 жыл бұрын
Hey BPRP, I know you won't see this but I'm going to ask anyways... How did you hold the camera directly above your paper in some of your older videos?
@lightyagami66474 жыл бұрын
There's a stand for that if u want professionality in ur work I used a huge pile of book for that LMAO😂😂😂😂😂
@rogerkearns80944 жыл бұрын
At London's East End we call it an infinite paah taah.
@danitigre2324 жыл бұрын
In the next video, can you solve the following integral? Latex: \int _{-a}^a\sqrt{a^2-x^2}\;dx,\;a>0
@dshifter74 жыл бұрын
What happens when you plug in complex values for x in an Infinite Power Tower?
@sanseng0002 жыл бұрын
Gets very complex, cannot be easily visualised
@Alieaz4 жыл бұрын
Can you do a video on the Newton-Raphson method for solving something like 3x^4-7x-1=0 etc?
@kaishang64064 жыл бұрын
how are the comments days ago if the video is 7 minutes ago?