Infinite Power Tower Equations Battle!

  Рет қаралды 138,045

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 356
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Hi all, thanks for the 500k subs! I will make a post of the winners of the secret giveaway tonight. After that I will be taking a break from YT.
@itislamin
@itislamin 4 жыл бұрын
Congratulations
@punjabiguy1296
@punjabiguy1296 4 жыл бұрын
I am the second because first are u so can u give me heart
@integralboi2900
@integralboi2900 4 жыл бұрын
How long?
@punjabiguy1296
@punjabiguy1296 4 жыл бұрын
How long break??
@ggeorge02
@ggeorge02 4 жыл бұрын
I hope you have a nice break!
@ricsix2.0
@ricsix2.0 6 ай бұрын
You got me here from the community post
@peternelson8876
@peternelson8876 4 жыл бұрын
Can't wait for part 3, I need that domain explanation!
@ganeshprasad9851
@ganeshprasad9851 4 жыл бұрын
It's in the description 😂
@peternelson8876
@peternelson8876 4 жыл бұрын
@@ganeshprasad9851 oh damn you right, thanks 👍
@peternelson8876
@peternelson8876 4 жыл бұрын
kzbin.info/www/bejne/parCnIOvidinp80
@speedychicken831
@speedychicken831 4 жыл бұрын
Nerd 😲
@Kero-zc5tc
@Kero-zc5tc Ай бұрын
Jjk has ruined me
@SeeTv.
@SeeTv. 4 жыл бұрын
Will you explain why the domain is like that in another video?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
It’s in part 3, see description for the unlisted videos
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Interestingly, if you have any quantity of the form a^(1/a), where a is positive and real, the corresponding power tower will always converge, because if for all such a not equal to e, a^(1/a) < e^(1/e), since at x = e, x^(1/x) attains its global maximum. So, despite the fact z^^♾ = a only converges if a < e or a = e, the power tower with z = a^(1/a) does converge. It just does not converge to a.
@thatnhoxiu
@thatnhoxiu 4 жыл бұрын
wayt, how is this comment 5 days ago??
@timka3244
@timka3244 4 жыл бұрын
HOW 5 DAYS AGO????
@StreetfighterDucati1
@StreetfighterDucati1 4 жыл бұрын
It may not attain that maximum on an open domain, ie the extreme value theory might not hold. X=e is just a critical point
@dugong369
@dugong369 4 жыл бұрын
If the tower doesn't converge to a, it still has to converge to y such that y^(1/y) = x = a^(1/a), so for a>e, the tower converges to the unique number y (between 1 and e) such that y^(1/y) = a^(1/a). This is the same unique number y such that y^a = a^y. In bprp's example a=3 and y = e^(-productlog(-ln(3)/3)) ~ 2.48 where productlog() is the name used for the Lambert W function on WolframAlpha. Note that 2.48^3 ~ 3^2.48
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
thatnhoxiu The video was unlisted.
@monke4200
@monke4200 4 жыл бұрын
When are you going to post .. isn't your break over ? 😔
@spandanhalder9967
@spandanhalder9967 4 жыл бұрын
Currently it's 2 am here, and I don't know why I'm watching this at this solemn night, but still I'm enjoying Idk why.
@gastonsolaril.237
@gastonsolaril.237 4 жыл бұрын
You're probably one of my fav youtubers of the last 2 years, bro! Your work is awesome. I'm really passionate about maths and you just feed my hype! And in these days of quarantine and isolation, you and Dr. Peyam sometimes even feel like my "math friends"! Hey listen; have you ever thought about a good video series about Stochastic Calculus? I'm quite into it right these days! (financial markets and stuff). Just learned how to derive Black-Scholes' PDE. But I get lost when certain subjects such as Ito's integral or similar come around. It would be excellent if you play some of that sort of things! Long live BPRP!
@drpeyam
@drpeyam 4 жыл бұрын
This is brilliant 😉
@roberttelarket4934
@roberttelarket4934 4 жыл бұрын
I can't believe you've never seen this problem? I first saw it in 1968 as an undergraduate!
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
For anyone who is curious, if you want to know what x^^♾ is equal to for any x in the domain, then notice that y = x^^♾, and x^^♾ = x^(x^^♾) = x^y. Therefore, y = x^y. To solve for y, take the natural logarithm here. We can do this because are assuming x is positive in this initial exercise. Hence ln(y) = y·ln(x), implying ln(y)/y = ln(y)·exp[-ln(y)] = ln(x), hence -ln(x) = -ln(y)·exp[-ln(y)]. If -ln(x) > -1/e or -ln(x) = -1/e, then the above equation implies W[-ln(x)] = -ln(y), where W is the Lambert W function, in this case, the principal branch of the W map. Therefore, y = exp(-W[-ln(x)]) = 1/exp(W[-ln(x)]) = 1/(-ln(x)/W[-ln(x)]) = -W[-ln(x)]/ln(x). The condition that -ln(x) > -1/e or -ln(x) = -1/e implies that ln(x) < 1/e or ln(x) = 1/e, which implies that x = e^(1/e) or x < e^(1/e), which agrees with what was stated during the video.
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Also, x < e^(1/e) implies ln(x) < 1/e, which implies -ln(x) > -1/e, which implies W[-ln(x)] > -1, which implies -W[-ln(x)] < 1. Therefore, -W[-ln(x)]/ln(x) = y < e, or equal to e if x = e^(1/e), which also agrees with what is stated in the video.
@timka3244
@timka3244 4 жыл бұрын
4 DAYS ago...
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Субс Тим The video was unlisted.
@samueldeandrade8535
@samueldeandrade8535 5 ай бұрын
​@timka3244 what a coincidence. 4 years ago you met the worst math content viewer and replied to him with the comment "4 DAYS ago..." Hahahahaha. Life is crazy.
@dan_was_here9328
@dan_was_here9328 2 жыл бұрын
I really like your channel. It is way more entertaining than the other math channels.
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
Managed to got half of bounds. Namely, x^x^x^...=y means x^y=y, this solves using Lambert W function: y=e^(-W(-ln x)) (I've seen your other videos where you explain what is W and how to solve such equations). But, W(x) domain is x≥-1/e (there are two real branches: W₀ domain is [-1/e; ∞), with values in the range [-1; ∞), W-₁ domain is [-1/e; 0), with values in the range (-∞; -1], that's a multivalued function). This means, there must be -ln(x)≥-1/e, solving that for x gives x≤e^(1/e). Then, if I put that value into equation, I've got y = e^(-W(-ln x)) = e^(-W(-1/e) = e¯¹ = 1/e. Now I need to prove this is lowest possible value of y. Also still haven't figured out how to find out other bounds.
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
I feel, we need to go from the definition of x^x^x^..., consider series f₀(x)=1, f₁(x)=x^f₀(x)=x, f₂(x)=x^f₁(x)=x^x, and so on, f_n(x)=x^{f_{n-1}(x)}, then define "power tower function" f(x) = lim f_n(x) for n→∞. Now we have to ask ourselves if this ever converges, and if it does, for which values of x? And this shoud give us all bounds.
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
The solution x=f¯¹(y)=y^(1/y). Let's analyze this formula. It's derivative is df¯¹/dy = y^(1/y)(1-log(y))/y². For df¯¹/dy=0 we get y=e, x=e^(1/e). This is the maximum of the f¯¹(y), that's why when we put 3 in it we have some adequate value, which happened to converge our power series to something less that 3.
@HoldensBro
@HoldensBro 3 күн бұрын
x=y^(1/y). The maximum point of this is x=1.44466786… substituting y=e, you can see that the result is the maximum. You can prove that y=e is the maximum by doing the derivative, which I won’t bother with here. Once y>e, you will see that x=y^(1/y) has two values of x.
@HoldensBro
@HoldensBro 3 күн бұрын
It happens that the cube root of 3 is the same as 2.478^(1/2.478), so the power tower converges to 2.478 instead of 3
@Aldiyawak
@Aldiyawak 3 жыл бұрын
5:44 *technically speaking* Ah yes, the engineering approximation.
@TNTacdc
@TNTacdc 4 жыл бұрын
Congratulations on 500k! Here's to 500k more!
@alexandrefrancoalcaraz9351
@alexandrefrancoalcaraz9351 4 жыл бұрын
I'm a math hobbyist, I don't have advanced education in math, but I love them and I'm able to understand most of your videos (they're awesome). I have a question due to my ignorance: When you have a tower exponent of real numbers, it has to be solved up-to-down? I mean, the solution you give to x^x^3 only works if we solve the exponents up-to-down, and then the same answer fits to any x^x^x^...^x^3 form. Is it correct? Thank you very much in advance!
@balazscsillag6445
@balazscsillag6445 4 жыл бұрын
5:40 Engineering students don't know why, because π=e=3
@chhabisarkar9057
@chhabisarkar9057 4 жыл бұрын
Lmao
@lakejizzio7777
@lakejizzio7777 4 жыл бұрын
We are using e=2.7 actually.
@黃子睿-q5o
@黃子睿-q5o 4 жыл бұрын
The worker's of Babylon estimate π more accurately than engineering students now! LOL
@rotabali5338
@rotabali5338 4 жыл бұрын
We use e equals to 2.8 only
@naseershaik5818
@naseershaik5818 4 жыл бұрын
Congratulations for got 500k subscribers
@hydrostrikehd4661
@hydrostrikehd4661 4 жыл бұрын
It's fun to see this video before it's published.
@hydrostrikehd4661
@hydrostrikehd4661 4 жыл бұрын
Now it has been published lol
@itislamin
@itislamin 4 жыл бұрын
How do you see these
@integralboi2900
@integralboi2900 4 жыл бұрын
ItIsLamin you can find them in playlists, he puts his unlisted videos in playlists before he publishes them.
@itislamin
@itislamin 4 жыл бұрын
@@integralboi2900 oh
@nghiaminh7704
@nghiaminh7704 4 жыл бұрын
Hey, then what's the problem with tower(x) = 3 ? Is there any clear explaination without using the range of y?
@egillandersson1780
@egillandersson1780 4 жыл бұрын
Half a million subscribers !!! Nice job !
@dushyanthabandarapalipana5492
@dushyanthabandarapalipana5492 4 жыл бұрын
Thanks !I wish you happy new year!
@ajinkya2344
@ajinkya2344 4 жыл бұрын
500k hits. Congrats
@danielmendes2923
@danielmendes2923 4 жыл бұрын
I got a idea. Since now you have 500k subscribes, do 500 integrals in one take to commemorate it. Who more agree with this? 😂
@cuonghienthaosonbuitrung2841
@cuonghienthaosonbuitrung2841 4 жыл бұрын
that's such a reckless idea. i have never heard it before. but if you want, then split it into many short videos
@adamkupczyk3826
@adamkupczyk3826 4 жыл бұрын
Before using x^x^x^x... = 2 you should prove it exists.
@OCTAGRAM
@OCTAGRAM 4 жыл бұрын
Infinite Power Tower was not explicitly defined as limit of finite power towers, so you are free to define it another way, as lim of x from 2 (good value) to 3. This is called continuation
@blackpenredpen
@blackpenredpen 4 жыл бұрын
OCTAGRAM Oh I mentioned about that in part 3.
@GreenMeansGOF
@GreenMeansGOF 4 жыл бұрын
The converging value is x=W_0(a)/a where W_0 is the principle branch of the Lambert W function and a=-ln(cbrt(3)). If I use W_(-1) instead, I get x=3 which does not make sense unless we somehow redefine convergence.
@mandeltownthekillerfrombab5202
@mandeltownthekillerfrombab5202 2 жыл бұрын
All numbers go past sqrt(2) is considered as infinite. Therefore two equations are equal.
@anonymouslies
@anonymouslies 4 жыл бұрын
A question is this concept releted to the Mandelbrot set? If yes then how? Also at 2:53 you forgot to add the doremon music Really dissapointed!! Great video tough.
@大大-u3m
@大大-u3m 2 жыл бұрын
A monk carrying a shark🤙🏻🤙🏻
@roderickwhitehead
@roderickwhitehead 4 жыл бұрын
Perfect followup.
@dugong369
@dugong369 4 жыл бұрын
If x=a^(1/a) but the tower (x^x^x^x...) doesn't converge to a, it still has to converge to y such that y^(1/y) = x = a^(1/a), so for a>e, the tower converges to the unique number y (between 1 and e) such that y^(1/y) = a^(1/a). This is the same unique number y such that y^a = a^y. In bprp's example a=3 and y = e^(-productlog(-ln(3)/3)) ~ 2.48 where productlog() is the name used for the Lambert W function on WolframAlpha. Note that 2.48^3 ~ 3^2.48
@DanBurgaud
@DanBurgaud 4 жыл бұрын
Suggestion: Instead of using a whiteboard or blackboard, use a transparent glass. The setup would be you facing the camera and glassboard between you and camera. Obviously, camera will be recording all the writings backward. Then using software, convert/mirror the video. This way, you dont have to keep turning your head to look at camera (to look at the audience); you will always be looking at the audience while writing the equations.
@nicholasscott3287
@nicholasscott3287 Ай бұрын
Downside is that you'd have to write baxk-to-front from your perspective to make it look right to the audience
@DanBurgaud
@DanBurgaud Ай бұрын
@@nicholasscott3287 Software will mirror it. There are some YT streamers doing exactly like this.
@younesabid5481
@younesabid5481 4 жыл бұрын
Isn't the infinite power tower a kind of tetration where the "exponent" approaches infinity? And btw, could you please make a video on the inverses of this operation? Namely the super root and the super log. And thanks!
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
Yes, an infinite power tower is "equivalent" to x^^♾. Also, tetration to a fixed exponent only has one inverse map, in this case, the superlogarithm of infinite order, which is expressible in terms of the natural logarithm and the Lambert W function.
@timka3244
@timka3244 4 жыл бұрын
HOW 5 DAYS AGO
@cable4751
@cable4751 4 жыл бұрын
@@timka3244 they're probably members
@peterchan6082
@peterchan6082 4 жыл бұрын
Hey bprp, 4:38 - 4:58 . . . How do you prove this?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
It's in part 3, you can see the video in the description : )
@cuonghienthaosonbuitrung2841
@cuonghienthaosonbuitrung2841 4 жыл бұрын
where are you now?
@pierreabbat6157
@pierreabbat6157 4 жыл бұрын
If I set x=3^(1/3) and evaluate a, x^a, x^x^a, ..., if a is in (0,3), then the sequence converges to some number between 2.45 and e. But if a>3, then the sequence goes to infinity. If a is just less than 3, the sequence decreases; 3 is an unstable fixed point. If I set y=e^(1/e) and evaluate a, y^a, y^y^a, ..., then e is a metastable fixed point. For a just less than e, the sequence converges very slowly to e, and for a just greater than e, the sequence diverges very slowly away from e, and eventually shoots off to infinity.
@yugarthsharma626
@yugarthsharma626 4 жыл бұрын
Damn the video's real smooth ;D
@s4m1rza
@s4m1rza 3 жыл бұрын
Hi, can you explain again please why the infinite superpower of x can be written as x^2?
@nahrafe
@nahrafe 2 жыл бұрын
Yo x^x^x^x... = 2 So because of x^(x^x^x^x...) = 2 We replace the never ending exponent with 2 as both are the same So thats it, x²=2
@s4m1rza
@s4m1rza 2 жыл бұрын
@@nahrafe yh but because its infinite, doesn't that mean u could also write it as x^x^2 = 2, or x^x^x^2 = 2, and so on. Also when u tetrate sqrt2 to infinity, u don't get 2.
@mokouf3
@mokouf3 4 жыл бұрын
Similar technique can be used for nested square roots/fractions equations.
@MathPhysicsFunwithGus
@MathPhysicsFunwithGus 2 жыл бұрын
Great video!!
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thanks
@Dreamprism
@Dreamprism 4 жыл бұрын
Awesome follow-up to your other video!
@error_6o6
@error_6o6 5 ай бұрын
Where do I get that chain chomp plush I need it
@52.yusrilihsanadinatanegar79
@52.yusrilihsanadinatanegar79 4 жыл бұрын
i forgot that this man was having a break
@davidgillies620
@davidgillies620 4 жыл бұрын
Infinite power tower not to be confused with Tower of Power which is a Californian R&B band.
@黃子睿-q5o
@黃子睿-q5o 4 жыл бұрын
showing the existence of x^x^...... is very important.
@BTheBlindRef
@BTheBlindRef 4 жыл бұрын
so what is that number that the tower of 3^(1/3) converges to? How do you solve for the value of such an expression?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
See part 4 in the description
@MithuBhattacharyaMukhopa-gm4yb
@MithuBhattacharyaMukhopa-gm4yb 9 ай бұрын
I still dont understand it where it comes from,but the info is excellent
@boujdadyouness7084
@boujdadyouness7084 4 жыл бұрын
the maths is amazing . I love the infinity
@alonilutowich4505
@alonilutowich4505 4 жыл бұрын
x^x^x^x... = 2 (1) Say both sides of the equations are the exponents of x x^(x^x^x^x....) = x^2 (2) plug in (1) into (2) x^2 = x^2 Therefore x can be equal to any number Which means 1^1^1^1.... = 2
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
No, that doesn't mean x can equal any number, and it doesn't mean 1^^♾ = 2. If I have the equation x^3 = 2x^2, and I multiply by 0, I get 0x = 0x, which is true for all x. This does not mean x^3 = 2x^2 is true for all x.
@alonilutowich4505
@alonilutowich4505 4 жыл бұрын
@@angelmendez-rivera351 that's not the same thing as what I did, I can say 2x^2 and x^3 are both exponents of x so that x^(2x^2) = x^(x^3) and sure it adds one more solution of x = 1 but it doesn't mean it's any x. The answer to that is still 2 like the original equation with the remove of 0 as an answer due to the domain
@MercuriusCh
@MercuriusCh 4 жыл бұрын
hi, bprp! Wanna cool task? Just look at this: tg(sin(x)) or sin(tg(x)) which is bigger solve for x on interval (0; pi/100)? Have fun!)
@cobyambrose2915
@cobyambrose2915 Жыл бұрын
Mistake at 6:27 - the constraint should apply to y and not x.
@Codertyu
@Codertyu 4 жыл бұрын
How to find mirror image in co-ordinate system ,sir please
@markstahl5272
@markstahl5272 4 жыл бұрын
Sir, Rules of tetration say you must work "downward" from the highest exponent evaluating to the base. You are incorrectly working "upward", the wrong direction and will give a totally different value. How can the expression be evaluated if you can never start at the last exponent of an infinite tower power and work "downward"?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Hi Mark. Whenever we are dealing with infinity, we should do it in terms of a limit. In this situation, we should define the inf power tower as the limit of a sequence of the functions x, x^x,x^x^x,... For more details, please see part 3 in the description.
@阿巴阿巴-z5i
@阿巴阿巴-z5i 4 жыл бұрын
Hello, Mr.Cao, can you do a video on volume of revolution in polar coordinate without using double or triple integral?
@ILoveMaths07
@ILoveMaths07 3 жыл бұрын
So that's his name?
@쉽게-q4r
@쉽게-q4r 4 жыл бұрын
I have a Q. What is infinite series of epsilon?
@Ryan-gq2ji
@Ryan-gq2ji 4 жыл бұрын
Is the derivative of ln(x!) lnx?
@sophanarato5373
@sophanarato5373 4 жыл бұрын
Please help this integral (cos(2x) - cos(ax))/(cos(x) - cos(ax)) which (a) is a constant!
@digitalsnowfall1961
@digitalsnowfall1961 4 жыл бұрын
Hey , if i have a polynomial,should its factors also must be a polynomial ? Please answer
@ghotifish1838
@ghotifish1838 4 жыл бұрын
I like the chain chomp microphone
@moregirl4585
@moregirl4585 4 жыл бұрын
Usual version I see don't say "you try (3^1/3)^... and get 2.4" but "you solve for 4 and get same result as 2"
@DANGJOS
@DANGJOS 3 жыл бұрын
In fact, any ath root of a will be smaller than eth root of e except eth root of e itself.
@Yok_Knnn
@Yok_Knnn 4 жыл бұрын
hey how are you? It’s been 2 months since you posted video last time. Are you OK?你还好吗?好久没看到你了!
@MeeraSingh-gn3ik
@MeeraSingh-gn3ik 4 жыл бұрын
Find the polynomial which when divided by a cubic polynomial gives a biquadratic quotient and a linear remainder
@perpetualrabbit
@perpetualrabbit Жыл бұрын
I am wondering: if you have an infinite power tower function f(x)=x^x^x^x..... you can write f(x)=x^f(x). But can you also write f(x)=f(x)^f(x) ? In the first case with x^x^x^x·.... you can never start evaluating the 'highest power' in the tower because the tower is infinite. But the second case is even worse: how do you even start figuring out what (x^x^x^...)^(x^x^x^...) means? The first tower is already infinite, so how can I stack the second on top of it? Do I just get x^x^x^x^..... again? If not, why not? I am confused.
@abrahamherzl9904
@abrahamherzl9904 4 жыл бұрын
Plz since 4 years i wondered how integral 1/x=lnx can u make a video about it?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Not a proof but it’s kinda nice. twitter.com/blackpenredpen/status/1233863309562011648?s=21
@abrahamherzl9904
@abrahamherzl9904 4 жыл бұрын
@@blackpenredpen lol i see... u proved it with a method that only can be true when the whole thing is already proved...so there is no proof after all?
@rachitjoon3811
@rachitjoon3811 4 жыл бұрын
Hi,bprp, can u explain why we can't integrate 1/dx
@Evan-ne5bu
@Evan-ne5bu 4 жыл бұрын
Bprp do you think you can do a video about the Bessel's differential equation and it's series solution?
@markklammerts4772
@markklammerts4772 3 жыл бұрын
Nice. But… why does this reasoning converges to sqrt 2 for tetration and not for normal power from bottom to top (in which 3^3^3 would be 27)?
@Misteribel
@Misteribel 2 жыл бұрын
How can 3^3^3 be 27? If you mean not as normal power tower (without parens it’s top to bottom), but left-to-right evaluation, it’s (3^3)^3 = 27^3 = 19683. The other way around it’s 7625597484987. The sequence doesn’t converge to √2, but an infinite power tower (not tetration) of √2^√2^√2…. actually converges to 2.
@권영훈-l4f
@권영훈-l4f 4 жыл бұрын
Very good!
@roberttelarket4934
@roberttelarket4934 4 жыл бұрын
This is an old problem I first saw as a teen in 1968!
@emanuellandeholm5657
@emanuellandeholm5657 4 жыл бұрын
Are you on vacation? :) Here's a nice integral for you: Let f(x) = sin(arctan(x)) tan(arcsin(x)). This looks kind of scary, huh? In fact the, integral of f(x) is nonelementary, so I suggest you try the integral of f^2(x) = sin^2(arctan(x)) tan^2(arcsin(x)) instead!
@lifemantras6099
@lifemantras6099 4 жыл бұрын
Blackpenredpen should be change now into bluewhale
@rajkamal6062
@rajkamal6062 4 жыл бұрын
Hey I want to ask u one question related to integration.While doing Integration of cos square x or sin square x why don't we use the simple linear Integration formula why we use formula of cos2x in doing their integration.please reply...
@RoMaths
@RoMaths 4 жыл бұрын
Big fan of you from INDIA🇮🇳
@liranzaidman1610
@liranzaidman1610 4 жыл бұрын
Who was the mathematician that proved those crazy thing?
@usptact
@usptact 4 жыл бұрын
The trick with color pen wouldn't work with any color. The trick only works for a specific range of colors.
@313bennyw3
@313bennyw3 4 жыл бұрын
Is it possible to do the integration of tan(cosx)dx?
@313bennyw3
@313bennyw3 4 жыл бұрын
I mean from 0 to 2pi lol
@parthkatke6706
@parthkatke6706 4 жыл бұрын
What is your channel's profile photo about?
@soulsilencer1864
@soulsilencer1864 4 жыл бұрын
hey i love your videos. Can you find the maximum and minimum values of f(x,y)= (x^y)/(y^x) by using partial derivatives?
@ДометдеВоргес
@ДометдеВоргес 4 жыл бұрын
I don't get why it doesn't work with 3 if e=3=π 🤷‍♂️
@facitenonvictimarum
@facitenonvictimarum 4 жыл бұрын
He is a teacher. He does math for fun. He makes KZbin videos to make money and to sell merchandise. He is a typical KZbin money-hungry con man.
@nilaxibhoot2899
@nilaxibhoot2899 4 жыл бұрын
Heyy when will you upload ur next video?
@pocojoyo
@pocojoyo 4 жыл бұрын
LOL, man. Dont you prefer a lapel microphone ? BTW Thanks for your videos
@blackpenredpen
@blackpenredpen 4 жыл бұрын
You’re welcome. I prefer my chain chomp or Pokéball mic : ))
@TheKannanmnj
@TheKannanmnj 4 жыл бұрын
How to denote independent events on Venn diagram .
@alejandrodelabarra2838
@alejandrodelabarra2838 4 жыл бұрын
Please! Use your incredible knowledge to solve "root locus" problems!!!
@gdash6925
@gdash6925 4 жыл бұрын
can you compute productlog(2)
@rafaelb.333
@rafaelb.333 4 жыл бұрын
Hey, make a video with the proof that the numbers with form abcd... = a! + b! + c! + d! + ... are finite. Ex: 145 = 1! + 4! + 5! It could be interesting
@lakejizzio7777
@lakejizzio7777 4 жыл бұрын
I understand the math behind Solve 1 but If you use sqrt(2) in infinite power tower it goes to infinity? Why we can pretend it's sqrt(2) in this.
@はにわ-r7p
@はにわ-r7p 4 жыл бұрын
They looks alike but we can’t solve one. How fantastic it is!! (I’m Japanese so I may make some grammatical errors.)
@pauljackson3491
@pauljackson3491 4 жыл бұрын
You said, "they looks" It should be, "they look". This makes the noun match the verb; "they" is plural but "looks" is singular. What you said is still better than most stuff on Twitter though.
@saharhaimyaccov4977
@saharhaimyaccov4977 4 жыл бұрын
Hi bprp .. can u slove the integral for (x⁵+1)^-1? ..please i cant slove it ..
@saharhaimyaccov4977
@saharhaimyaccov4977 4 жыл бұрын
@blackpenredpen
@monikagulati3737
@monikagulati3737 4 жыл бұрын
Hi I like your videos very much can u please explain through a video why derivative of lnx is 1/x
@coolmangame4141
@coolmangame4141 4 жыл бұрын
does anyone remember when he said that he'll do x^x^x^x^... = 2017 next year in 2018 lol
@blackpenredpen
@blackpenredpen 4 жыл бұрын
I...... remember......
@jofx4051
@jofx4051 4 жыл бұрын
Just realizing that it has no solution since y>e
@frankdominick2546
@frankdominick2546 Ай бұрын
You can write x^x^x^x^... = 2 as a 'limit." A reverse limit. lim (...(2^.5)^((2^.5)^((2^.5)^((2^.5)^(2^.5))))). Start from the right and work your way to the left. If you plug these values into your calculator one at a time, you will see that these values do converge to 2 after a while. So, x does in fact = (2^.5). The way you plug this into your calculator is: (2^.5)^(2^.5),.. then (2^.5)^Answer,.. (2^.5)^Answer,.. (2^.5)^Answer,.. and so on.
@gz4978
@gz4978 4 жыл бұрын
That's why x^^∞=2 and x^^∞=4 haven't the same result!
@Nylspider
@Nylspider 4 жыл бұрын
Hey BPRP, I know you won't see this but I'm going to ask anyways... How did you hold the camera directly above your paper in some of your older videos?
@lightyagami6647
@lightyagami6647 4 жыл бұрын
There's a stand for that if u want professionality in ur work I used a huge pile of book for that LMAO😂😂😂😂😂
@rogerkearns8094
@rogerkearns8094 4 жыл бұрын
At London's East End we call it an infinite paah taah.
@danitigre232
@danitigre232 4 жыл бұрын
In the next video, can you solve the following integral? Latex: \int _{-a}^a\sqrt{a^2-x^2}\;dx,\;a>0
@dshifter7
@dshifter7 4 жыл бұрын
What happens when you plug in complex values for x in an Infinite Power Tower?
@sanseng000
@sanseng000 2 жыл бұрын
Gets very complex, cannot be easily visualised
@Alieaz
@Alieaz 4 жыл бұрын
Can you do a video on the Newton-Raphson method for solving something like 3x^4-7x-1=0 etc?
@kaishang6406
@kaishang6406 4 жыл бұрын
how are the comments days ago if the video is 7 minutes ago?
@executorarktanis2323
@executorarktanis2323 4 жыл бұрын
Member?
@rahimeozsoy4244
@rahimeozsoy4244 4 жыл бұрын
Patreon
Why it doesn't converge to 3?
10:50
blackpenredpen
Рет қаралды 103 М.
Solving sin(x)^sin(x)=2
10:46
blackpenredpen
Рет қаралды 411 М.
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
Vampire SUCKS Human Energy 🧛🏻‍♂️🪫 (ft. @StevenHe )
0:34
Alan Chikin Chow
Рет қаралды 138 МЛН
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
Domain and Range of the Infinite Power Tower Function
9:40
blackpenredpen
Рет қаралды 71 М.
The Math of "The Trillion Dollar Equation"
30:15
Dr Mihai Nica
Рет қаралды 103 М.
Infinite tetration of rad2 = 2 [tetration]
12:34
Prime Newtons
Рет қаралды 169 М.
How to Solve Weird Logarithm Equations
9:34
blackpenredpen
Рет қаралды 249 М.
The Man Who Solved the World’s Most Famous Math Problem
11:14
Newsthink
Рет қаралды 1,2 МЛН
Decoding The Infinite i Power Tower
9:16
BriTheMathGuy
Рет қаралды 63 М.
are you tired of the a^b vs b^a questions?
12:42
blackpenredpen
Рет қаралды 929 М.
How Simple Math Led Einstein to Relativity
30:27
Ben Syversen
Рет қаралды 240 М.
they don’t teach these kinds of expoential equations in algebra
11:44