*Timestamps* 0:00 Introduction (Lisa Guo) 2:21 1. Scale out 5:11 1.1 Instagram Stack Overview 5:46 1.2 Storage vs Computing 6:29 1.3 Scale out: Storage 8:13 1.4 Scale out: Computing 8:52 1.5 Memcache + consistency issues 12:05 1.6 DB load problem 14:01 1.7 Memcache Lease 15:12 1.8 Results, Challenges, Opportunities 17:03 2. Scale up 17:57 2.1 Monitor (Collect Data) 20:07 2.2 Analyze (C-Profile) 23:06 2.3 Optimize 26:19 2.3a Memory Optimizations 29:06 2.3b Network Latency Optimizations 30:40 2.4 Challenges, Opportunities 31:36 3. Scale Dev Team 33:06 3.1 What We Want 33:30 3.2 Tao Infrastructure 34:33 3.3 Source Control 36:17 3.4 How to ship code with 1 master approach? 37:54 3.5 How often do we ship code? 40:03 Wrap-up 41:15 Q&A
@zss1234567894 жыл бұрын
Note: My understanding for Memcache Lease is, you're allowing servers to return stale values with the knowledge of it being stale. This is different from most simple implementations of cache invalidation, which would query the db and update the cache whenever the value is stale. The philosophy here is that the stale value is still useful, and the value difference is not worth the load on the database.
@bogdax3 жыл бұрын
@@zss123456789 That's a very good point I haven't thought about. Thanks!
@juakinggg2 жыл бұрын
not every hero are wearing the cape, thx !!
@mikejeffery83716 жыл бұрын
This was a fantastic presentation. She covered a huge amount of material in a short time. What they've done and how they've done it is very impressive.
@sanjeevdiitm4 жыл бұрын
InfoQ is doing excellent job by bringing these talks to us.
@cpsarathe6 жыл бұрын
That’s the great presentation . To the point and not super technical . Newbie like me in the world of architecture can understand
@ryan-bo2xi4 жыл бұрын
This is a treasure box ! Thank you Miss/Mrs XYZ for the super lucid explanation.
@JamesCollins902 жыл бұрын
"I need to learn about scaling" *heads to youtube, finds this video* "Wow, I now know EVERYTHING about scaling". The best video on scaling infrastructure i've found so far. No jargon, no acronym's, specific detail about exactly how things are balanced, routed, managed and replicated. Love it.
@smonkey0013 жыл бұрын
Every architecture video should be like this, instead of marketing BS.
@babitarpur6 жыл бұрын
Well thought through presentation. Many takeaways.
@rameshj91983 жыл бұрын
Kudos to infoQ team for bringing such tech videos.
@yuchonghe31924 жыл бұрын
One of the best presenter who I have ever seen.
@hokcuan2390 Жыл бұрын
Amazing sharing! Kudos InfoQ❤
@rustemiskakov29732 жыл бұрын
Best presentation I have ever seen! Thank you.
@enjoyalife14 жыл бұрын
Well delivered talk with clear separation of topics.
@shoumeshrawat13623 жыл бұрын
Such an insightful presentaion from a developers point .. Thank you so much
@markuslenger26423 жыл бұрын
A complex topic explained in a simple way. Thank you!
@ketanshah66133 жыл бұрын
This has been such an educational video. I feel excited about the problems, everything was so well covered and explained and So many aspects were touched without any redundant data. Thank infoq for this video. Super super intereseting.
@FeliciaFay4 жыл бұрын
Really fantastic presentation, thanks Lisa and InfoQ!
@zenymax366 жыл бұрын
Great talk. I have got some new tools and process for my work. Thank you very much.
@infoq6 жыл бұрын
Happy to hear that.
@riteshbajaj62 жыл бұрын
Easy to understand presentation. Thanks
@jccourse5 жыл бұрын
it was a fantastic presentation. very clear, easy understand, and very detail,
@karvinus6 жыл бұрын
Great presentation. Great job Lisa !
@yuhechen72584 жыл бұрын
Great presentation! I'm dealing with many of the scaling challenges discussed by Lisa in my organization. Although they vary and Instagram's solution does not solve my challenges, but Lisa certainly offers any view of how great companies address them.
@tejasripavuluri63595 жыл бұрын
Awesome concise high level presentation.
@Sanyat1002 жыл бұрын
easily the best presentation i ever came across in these talks
@filmbyben23 жыл бұрын
Such an awesome video, thank you for sharing
@helinw6 жыл бұрын
Thanks for the great talk, very clear and concise. Interestingly, some of the problem in the "scale up" section can be resolved by using a programming language more suitable for modern machines. The "scale up" section sounds like "hacks that make Python faster".
@MrHades23254 жыл бұрын
I am graduating this year, so I don't have a lot experience. I feel from your comment that you have a lot of knowledge from experience. May I ask you which programming languages are more suitable for scalability in modern machines. Thank you in advance
@TeluguAbbi4 жыл бұрын
@@MrHades2325 Erlang and Scala - To name two
@piyh39623 жыл бұрын
Developer efficiency > compute efficiency
@jimmyadaro3 жыл бұрын
@@piyh3962 “Move fast, break things” :)
@abeidiot2 жыл бұрын
stupid comment. And I'm not even a python fan. It's usually academics who make such shallow statements
@mnchester2 жыл бұрын
Amazing presentation!
@pareshmaniyar82733 жыл бұрын
Dude, load testing on prod! What a badass move!
@amlanch5 жыл бұрын
Nice presentation. There are bunch of things that can be improved for detection of the time series jumps by Fourier transformation of the time series and comparing the two frequencies on a predetermined delta of difference.
@amitcool993 жыл бұрын
Gold Video ! learned so many aspect of scaling
@chuckywang5 жыл бұрын
Does dead code really take up that much memory? It will never be run so it doesn't affect runtime, but how much smaller would your executable be if you removed dead code?
@gsb223 жыл бұрын
I think here they are talking about RAM consumption. In other compiled languages, compiler actually removes the code that will never get called, JS has tree-shaking something like that, but in case of Python, if a module is loaded into memory, Python loads on methods into memory and then this cascades. I'm not sure how much gain they could have had, but by the looks of improvements, it seems, they were building really fast and they left a lot of dead code behind which when cleaned helped them a lot. Had they been cleaning from start, they change would not be that much.
@senthilkumar55 жыл бұрын
Excellent Presentation. Insight to practical scalable challenges.
@RichardTMiles3 жыл бұрын
she did really well. also s/o to the guy asking the very last question for answering it with his exp..
@False414 жыл бұрын
Super informative. Thank you!
@person.a Жыл бұрын
Hey there! I just wanted to take a moment to remind you how incredible you are. Your kindness, resilience, and unique talents make a positive impact on the lives of those around you. Your smile has the power to brighten the darkest of days, and your words have the ability to uplift and inspire. Never forget the strength and beauty that reside within you. You are capable of achieving great things and making a difference in this world. So keep being amazing, keep chasing your dreams, and never lose sight of the incredible person you are. You've got this, and today is going to be an amazing day for you!
@VaibhavPatil-rx7pc3 жыл бұрын
Great post I ever seen thanks
@jpzhang82904 жыл бұрын
How would you synchronize betwen different postgresql servers? It would still cause latency issue.
@jeffsaremi5 жыл бұрын
Extremely beneficial. Please have more of these
@hengwang744 жыл бұрын
Best Talk I have seen! Thank you for sharing!
@yuhechen72584 жыл бұрын
Lisa didn't discuss about the postgres data sharding. Is it possible to store meta data and handle queries for billions users in just one postgres instance? Any idea?
@evgeni-nabokov3 жыл бұрын
10:20 She mentioned sharding by hash of user id.
@roshedulalamraju79362 жыл бұрын
Thank you so much for sharing 😊😊😊
@random-characters4162 Жыл бұрын
Git and code shipping approach is mind blowing ❤
@just4meonly3 жыл бұрын
Well said "performance part of dev cycle rather than after thought.."
@Pjblabla22 жыл бұрын
Very informative talk
@TheInvestmentCircle2 жыл бұрын
Wow. She is brilliant.
@shakeib982 жыл бұрын
At 12:05, if the memcache is invalidated then why does it need it then? Like the read and write operations are on the database server then.
@cenkerdemir6 жыл бұрын
wow. this was a great talk!
@MengLinMaker4 ай бұрын
This has become my go to talk
@pursuitofcat3 жыл бұрын
26:04 Is this statement correct? "We run n processes where n is greater than the cpu cores of the system." I thought we should have at most the same number of processes as the number of cores.
@hemalpatel15044 жыл бұрын
deployment to 20,000+ servers in 10 mins !!!
@Rxlochan3 жыл бұрын
Yeah, just mic drop moment
@genie79415 жыл бұрын
Fantastic. So insightful.
@KrishnaDasPC3 жыл бұрын
Brilliant talk👍
@pariveshplayson2 жыл бұрын
Fantastic!!
@pranavsharma90253 жыл бұрын
Excellent talk.
@placidchat75325 жыл бұрын
How do you do test the configurations for scale out, or is this applied to live running machines? Or are specific test machines carved out from live users?
@obiwan_smirnobi2 жыл бұрын
Awesome talk, thank you!
@driziiD5 жыл бұрын
awesome to see python scaled to INSTAGRAM LEVEL
@xnoreq5 жыл бұрын
Only usable on a large scale when replaced with C, lol. Once again Python has proven that it is a scripting language for toying around. This talk is like one complaint about Python after the other: 1) Performance is bad. 2) Memory usage is bad. (I lol'd when she said that just the running Python code itself takes up a significant amount of memory.) 3) GC is bad.
@alpham66853 жыл бұрын
This is pure gold !
@chiranjibghorai69506 жыл бұрын
Excellent talk!
@mitotv63762 жыл бұрын
Very nice
@blasttrash4 жыл бұрын
11:36 Today I learnt that you can run daemons on a database also(postgres in this case as she said).
@psykidellic4 жыл бұрын
Yeah, even i was not aware. I did some digging and i this is done using PgQ. instagram-engineering.com/instagration-pt-2-scaling-our-infrastructure-to-multiple-data-centers-5745cbad7834 ... under the caching section.
@kienphan64366 ай бұрын
Great talk thank you
@akshatjainbafna2 жыл бұрын
TAO is a Distributed Graph based database not a Relational database. Their are nodes and links for relations
@tamborelconejo4 жыл бұрын
Someone can say where can we find more information about that git single-master approach?
@gsb223 жыл бұрын
It's simple, usually if you are working on a feature, you create a branch from master and then work on it and then after ages, you merge it back into master. What they did was, instead of branching out, every commit would go to master, so basically your commits have to be stable, but need not to be complete, so this way, if someone starts working next day, they already have the changes u committed which reduces future merge issues.
@tawfiknasser13483 жыл бұрын
@@gsb22 This sound like not the best approach. what about code review ? or in case reverting only one commit after you pushed your 100 stable commit. now imagine after reverting this commit(for some reason) the feature is crashing ! shall your revert all the 99 commit ? should you fix and commit and push in the same day ? i mean, this can cause more issues than it may help.
@gsb223 жыл бұрын
@@tawfiknasser1348 you can cherry pick to revert a commit. And yes, this method has problems but this us the tradeoff they went with
@anandt83623 жыл бұрын
Any reason why these images can't be asynchronously processed when you user uploads the image and stores different sizes in S3 buckets provided through CDN.. Thereby, you avoid processing while fetching whenever user requests .. This would further improve the processing power right .. Anyone thoughts on this ?
@quicksilver54133 жыл бұрын
Really good talk!
@vinylwarmth Жыл бұрын
This is a seriously good talk
@karnveerayush5 жыл бұрын
Fantastic presentation, lot was covered in very short span of time. Is there anyone point me more such content here on KZbin. Thanks.
@infoq5 жыл бұрын
There is similar content available on infoq.com
@valentynkuznietsov78663 жыл бұрын
Great talk!
@ankitsolomon6 жыл бұрын
Could someone pls post link for the article mentioned by author related to disabling garbage collection?
@infoq6 жыл бұрын
This article could be useful: www.infoq.com/articles/Java_Garbage_Collection_Distilled
@denkigumo5 жыл бұрын
Fantastic talk! Learnt a lot.
@kevin89184 жыл бұрын
OMG, the source control part is surprising. It looks like ig is a giant monolithic app with one code base. Why not break it out at early phase
@jimmyadaro3 жыл бұрын
Because the “move fast, break things” philosophy
@Kideqx7 жыл бұрын
wow! this is cool
@Joso9975 жыл бұрын
How does it know if it should wait or use stale value?
@gsb223 жыл бұрын
Exactly. If every Django uses the stale data, memcache will never get updated. [Edit] : I think, if a request comes and no other "fill" request is being processed, then this request gets the DB access whereas other requests that are coming when the previous one was still filling, they get stale data and once the fill up is done and new like gets added and DB is updated, then the cycle starts. Example - Request R1 comes, no other requests are doing the "fill" process, memcache allows this requests to hit DB and do the fill up, meanwhile if R2,R3,...R100 comes, memcache says, their is already a fill process in work and you can fckk off with this stale value or wait till this "fill" process is done and then you would be treated as R1 and you get to query the data. Anyone who didnt get this, feel free to comment, I'll try different way to explain this then.
@kevintran61024 жыл бұрын
How can they handle conflict when using a single branch?
@gsb223 жыл бұрын
they push frequently, so merge conflicts are small and easy to fix. If two branches are merged after a month of development on them, then that's shit storm whereas if they are regularly updated with master, less conflicts.
@audi886 жыл бұрын
Instead of having every django d1, d2 competing to go the db for a cache refresh and causing the 'thundering herd', the d1,d2s should only check for data in memcache. It can be the job of memcache or an external service to refresh the data (independent of d1,d2s) from the DB. memcache can continue to serve old or stale data to d1,d2, while in parallel - load the data from DB and then invalidate the old data in a transactional block. Of course for a short time till invalidation you may have double the size of data in you memcache. It is sort of similar on what memcache-lease is doing, but I think d1,d2s should be kept to focus on memcache rather than speaking to the db and causing 'herd' problem.
@matt_not_fat5 жыл бұрын
I don't agree, because cache is more expensive than DB. And like the speaker said, data access is local to region many times. If you eagerly update the memcache with the entire dataset you have to then deal with the huge amount of storage you require, not to mention that scaling out the memcache cluster (or any change in the hardware in that cluster) would take forever, because you need to prewarm the cache. If you don't do that you end up with a lazy population strategy, which is exactly what she is suggesting. You also amortize the cost of the first slow query. It's win win.
@cozzbie4 жыл бұрын
Wonder how they do code reviews if everyone works from one branch
@weblancaster7 жыл бұрын
Great talk.
@donotreportmebro Жыл бұрын
this planet will never recover from the Python's environmental impact
@monukumar-du1mv5 жыл бұрын
11:56 I think the solution where the cache is invalidated is not even a solution because the Memcache will be empty all the time. This is because whenever a comment is registered for a post, the cache is invalidated. Would anyone clarify?
@fabianoenglerneto1295 жыл бұрын
It's not the entire cache that is invalidade, it's just the cache for the specific object, for example the comments of a single post only
@monukumar-du1mv5 жыл бұрын
@@fabianoenglerneto129 Thanks!
@MendaSpain6 жыл бұрын
Wow, 20,000 web servers where the code is deployed with 40-60 rollouts per day
@mostafaelmadany80466 жыл бұрын
a huge work behind the scenes
@aeshi0016 жыл бұрын
definitely interested on how they manage to do this
@That__Guy3 жыл бұрын
I started sweating when she talked about the single branch tactic
@payaljain4015 Жыл бұрын
you got that ? if yes can you please explain
@Sunshine_19982 жыл бұрын
Go Lisa!!
@arunsatyarth90974 жыл бұрын
Very nice presentation. But I wish she wouldnt say Data Centre and Region interchangably.
@nortrom212 Жыл бұрын
Engineers are so good at optimizations that they ultimately optimize themselves. Great presentation though...
@Textras6 жыл бұрын
Very good thanks
@ZhaoWeiLiew5 жыл бұрын
This was pretty insightful.
@Secret4usАй бұрын
Interesting, thanks
@pizza-cat13375 жыл бұрын
Everyone commits on master and it doesn't go wrong... that's impressive haha.
@jimmyadaro3 жыл бұрын
Testing EVERYTHING 😂
@payaljain4015 Жыл бұрын
@@jimmyadaro but dev at one time is it ?
@Roshen_Nair2 жыл бұрын
Bookmark: 12:00
@saurabhchopra4 жыл бұрын
44:21 You guys are robust!
@hardikmahant73533 жыл бұрын
In Instagram, Requests = Djangos? @15:02
@cafeliu54015 жыл бұрын
Can anybody see my comment? Am I trapped on a single Datacenter in SGP?
@ddg1704 жыл бұрын
this is an awesome talk!!!
@hammad80533 жыл бұрын
"Don't count the servers, make the servers count"
@jimmyadaro3 жыл бұрын
That’s easy when you have a multimillionaire contract with a cloud computing provider (and/or own your own bare-metal servers).
@gsb223 жыл бұрын
@@jimmyadaro I think what it meant was, dont say we have 10k servers so the load will get handled, say that every server is running 100% efficiently.
@jimmyadaro3 жыл бұрын
@@gsb22 Sure, that makes sense, but still, they are capable of pay per really-high-scale servers.
@deerew235 жыл бұрын
This is interesting
@bezimienny51493 жыл бұрын
Why Memcache and not Redis?
@joggyjames3 жыл бұрын
Memcache is better for them because instagram is a volatile environment.
@1234fewgfwe Жыл бұрын
This convinces me that even Python can be scaled as a global distributed system. Stop saying python sucks guys
@1234fewgfwe Жыл бұрын
Python the best.
@DudeSkinnyTall4 жыл бұрын
What is wrong with that bitrate? I only have 144p !!!