Insights from Finetuning LLMs with Low-Rank Adaptation

  Рет қаралды 6,414

Sebastian Raschka

Sebastian Raschka

Күн бұрын

Пікірлер: 17
@dariusduesentrieb
@dariusduesentrieb 11 ай бұрын
Very nice! I was just starting to think about a small project using LLM finetuning, so this video is very useful. (Though the hard part is currently getting the training data ...).
@ugestacoolie5998
@ugestacoolie5998 5 ай бұрын
you should go check out exisint datasets on hugging face, maybe something there can be of what you need
@franky07724
@franky07724 8 ай бұрын
Thanks for the video and all the references. One suggestion: I feel that it is better to describe (write on the slides about) "model/data/hardware/batch-epoch" in some experiments, e.g., LoRA/QLoRA memory/runtime trade-off on 6:40. Maybe add the comment of these items in the description too. Great video!
@SebastianRaschka
@SebastianRaschka 8 ай бұрын
I like that idea and will make sure to include more of the details in future videos!
@franky07724
@franky07724 8 ай бұрын
@@SebastianRaschka Thanks!
@Sanguen666
@Sanguen666 7 ай бұрын
always funny to see the best videos in utube get zero views. nice video.
@SebastianRaschka
@SebastianRaschka 7 ай бұрын
Ha, thanks, I take this as a compliment :)
@Scientist287
@Scientist287 7 ай бұрын
He is famous outside of KZbin, only a matter of time before he blows up here
@MuratJumashev
@MuratJumashev 11 ай бұрын
Thank you, @SebastianRaschka! Can you please give some ideas on how to add new languages to pretrained LLMs, for example, Llama 2? I reviewed its tokenizer, and our alphabet (Kyrgyz, Cyrillic) is mostly supported except for 3 uppercase letters. While English speakers can enjoy the LLMs, people speaking low-resource languages cannot benefit as much due to limited language support. I think a tutorial on this would be beneficial globally. I was thinking about adding Kyrgyz-English and English-Kyrgyz parallel corpora as well as monolingual texts. Do you think that would enable the "transfer learning" thing? I'm curious about your thoughts on whether this could be a viable solution to enhance the language model's capabilities for Kyrgyz.
@MuratJumashev
@MuratJumashev 11 ай бұрын
The following illustrates the tokenization output from the Llama 2 tokenizer for a short sentence in Kyrgyz: ``` Original sentence: ӨМҮРҮҢДҮН аягына чейин оку. өмүр! Encoded sentence: [29871, 214, 171, 30017, 213, 177, 30027, 213, 177, 213, 165, 30032, 213, 177, 30029, 1097, 29970, 29969, 29982, 477, 2950, 29977, 8197, 614, 1382, 29889, 29871, 30778, 29959, 30750, 29927, 29991] Token ID 29871 --> Token ID 214 --> � Token ID 171 --> � Token ID 30017 --> М Token ID 213 --> � Token ID 177 --> � Token ID 30027 --> Р Token ID 213 --> � Token ID 177 --> � Token ID 213 --> � Token ID 165 --> � Token ID 30032 --> Д Token ID 213 --> � Token ID 177 --> � Token ID 30029 --> Н Token ID 1097 --> а Token ID 29970 --> я Token ID 29969 --> г Token ID 29982 --> ы Token ID 477 --> на Token ID 2950 --> че Token ID 29977 --> й Token ID 8197 --> ин Token ID 614 --> о Token ID 1382 --> ку Token ID 29889 --> . Token ID 29871 --> Token ID 30778 --> ө Token ID 29959 --> м Token ID 30750 --> ү Token ID 29927 --> р Token ID 29991 --> ! ```
@SebastianRaschka
@SebastianRaschka 11 ай бұрын
Good points. Unfortunately, I am not familiar with LLMs for these languages. I think the challenge really is the tokenizer. If you want to leverage a pretrained LLM, even if you want to train it further on new languages it's crucial to use the same tokenizer that was used to train the LLM in the first place. Otherwise, the embedding layers won't recognize any of the tokens or map them weirdly. What you could do though is extend the tokenizer with those characters, I think. E.g., if you use tiktoken for GPT-like models (I have an example here in section 2.5, github.com/rasbt/LLMs-from-scratch/blob/main/ch02/01_main-chapter-code/ch02.ipynb), you can extend the tokenizer with new special tokens via "allowed_special" E.g., integers = tokenizer.encode(text, allowed_special={""}) These then get added after the main vocabulary. Instead of "" you could try to input the special characters you mentioned. I am not sure how or if it works, but maybe worth a try.
@programmingsiri5007
@programmingsiri5007 10 ай бұрын
Thanks for sharing! what do you think of the recent CALM paper by google which allows of composing llms in a different ways than LORA?
@esamyakIndore
@esamyakIndore 11 ай бұрын
Kindly share some project tut with this lecture.
@frankchieng
@frankchieng 8 ай бұрын
it seems like diffuser just implemented DORA in their newest.version
@SebastianRaschka
@SebastianRaschka 8 ай бұрын
A nice! Btw if you are interested, I've written an in-depth tutorial covering DoRA last month: "Improving LoRA: Implementing Weight-Decomposed Low-Rank Adaptation (DoRA) from Scratch" (magazine.sebastianraschka.com/p/lora-and-dora-from-scratch)
@ThanhPham-xz2yo
@ThanhPham-xz2yo 5 ай бұрын
Thanks
@anshumansinha5874
@anshumansinha5874 5 ай бұрын
How many times do you say ‘yah’ in a day? Although great content :)
Finetuning Open-Source LLMs
20:05
Sebastian Raschka
Рет қаралды 34 М.
LLMs: A Journey Through Time and Architecture
19:44
Sebastian Raschka
Рет қаралды 4,6 М.
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 28 МЛН
Turn Off the Vacum And Sit Back and Laugh 🤣
00:34
SKITSFUL
Рет қаралды 7 МЛН
SIZE DOESN’T MATTER @benjaminjiujitsu
00:46
Natan por Aí
Рет қаралды 5 МЛН
Understanding PyTorch Buffers
13:33
Sebastian Raschka
Рет қаралды 6 М.
LLMs for Everything and Everyone! - Sebastian Raschka - Lightning AI
45:22
Optimized AI Conference
Рет қаралды 7 М.
Developing an LLM: Building, Training, Finetuning
58:46
Sebastian Raschka
Рет қаралды 62 М.
LoRA explained (and a bit about precision and quantization)
17:07
Reinforcement Learning from Human Feedback: From Zero to chatGPT
1:00:38
Building LLMs from the Ground Up: A 3-hour Coding Workshop
2:45:10
Sebastian Raschka
Рет қаралды 78 М.
DoRA: Weight-Decomposed Low-Rank Adaptation
31:15
Gabriel Mongaras
Рет қаралды 2,1 М.
Which Quantization Method is Right for You? (GPTQ vs. GGUF vs. AWQ)
15:51
Maarten Grootendorst
Рет қаралды 21 М.
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 28 МЛН