this video literally saved me from having a mental breakdown. thank you very much!
@IntegralsForYou4 жыл бұрын
You're welcome, Midome Hiragi! Thanks for telling me it! 😉
@rahuldsouza19853 жыл бұрын
Divide numerator and denominator by (cos x)^2 Numerator becomes (sec x)^2 and denominator becomes tan x We can then sub tan x as t Result will be log t log(tan x)
@IntegralsForYou3 жыл бұрын
kzbin.info/www/bejne/sHLYqKygp515jbs 😉
@sanrai54806 жыл бұрын
Ahaha😂😂😂 I spend lot of time for this "1/(sin^2 x * cos^2 x)" luckily I ended up being here. Thank you so much!!!
@IntegralsForYou6 жыл бұрын
;-D You're welcome! ;-D
@theengineeringstudent26784 жыл бұрын
You are the king of the tricks. Regards from Angola-Africa
@IntegralsForYou4 жыл бұрын
Thank you Florindo! 👍
@theengineeringstudent26784 жыл бұрын
The power of number one (1).
@lepetitskieurhaut-savoyard49202 жыл бұрын
You could simplify the solution in ln(tan(x))+C
@IntegralsForYou2 жыл бұрын
Totally agree! 💪
@rivercuperus115811 ай бұрын
Thanks bro, this video was a lifesaver.
@IntegralsForYou11 ай бұрын
Glad it helped! ☺☺
@madmax37183 жыл бұрын
Or, how about ('{' use this as int sign) In second step, Putting{ (Sinx/cosx)=tanx and { (cosx/sinx=cotx) Then, we get { tanx= ln|secx| and {cotx= ln|sinx| As they have addition in between, it will be, ln|secx| + ln|sinx| As it's logarithm, we can multiply secx and sinx, which will give, ln|secx.sinx| =ln|(1/cosx.sinx|= ln|tanx|
@IntegralsForYou3 жыл бұрын
It is ok for me 😉
@irajnaghash6 жыл бұрын
-Ln|cosX| + Ln|sinx|+ C= Ln (sinx/Cosx) + C= Ln|TanX|+ C
@Physics-j6c3 ай бұрын
Btw I wanted to ask that:- If I create sin2x in downside then, just by doing reciprocal of it we get cosec2x so, integral of cosec2x is just = log|cosecx-cotx| would be answer ????
@IntegralsForYou2 ай бұрын
Hi! Be careful with the constants 2 from the formula: sin(2x) = 2sin(x)cos(x) ==> sin(2x)/2 = sin(x)cos(x) Then: Integral of 1/sin(x)cos(x) dx = = Integral of 1/(sin(2x)/2) dx = = Integral of 2/sin(2x) dx = = 2*Integral of 1/sin(2x) dx = = 2*Integral of csc(2x) dx = Substitution: u = 2x du = 2 dx ==> du/2 = dx = 2*Integral of csc(u) du/2 = = (2/2)*Integral of csc(u) du = = Integral of csc(u) du = = -ln|csc(u) + cot(u)| = = -ln|csc(2x) + cot(2x)| + C 💪
@Physics-j6c2 ай бұрын
@@IntegralsForYou Thank you so much for your efforts... ❤️❤️ Yeah 2 was the constant which I haven't type in the comment as it was already been divided by another 2 of csc x I'm bit a confused in my answer which I got !
@O_Tobi-e6hАй бұрын
Sinxcosx= sin(2x)/2 1/sinxcosx=2/sin(2x)
@IntegralsForYouАй бұрын
Agree! After a u=2x substitution you will only have to solve the integral of 1/sin(u) 💪
@IITD200529 күн бұрын
Thank you sir 😊😊
@IntegralsForYou28 күн бұрын
Most welcome! ❤❤
@minadragonrider86953 жыл бұрын
Thank you so much 😍 You saved me
@IntegralsForYou3 жыл бұрын
My pleasure! 😊 Have you watched both methods? Integral of 1/sin(x)cos(x) ( Method 1: 1=sin^2(x)+cos^2(x) ): kzbin.info/www/bejne/annTnoevlNuFgs0 Integral of 1/sin(x)cos(x) ( Method 2: u=tan(x) ): kzbin.info/www/bejne/sHLYqKygp515jbs
@danielahernandezaleman80283 жыл бұрын
Thank you so much, it really helped me
@IntegralsForYou3 жыл бұрын
My pleasure! 😉
@abhishekdhepe324910 ай бұрын
btw, integration of tanx dx is log l secxl
@IntegralsForYou10 ай бұрын
Totally agree! Integration of tan(x) is ln|sec(x)| and integration of cot(x) is -ln(csc(x)) but I try to not use sec(x) and csc(x) in my videos. It is not wrong, it is just that I don't like them hehe
@rajatverma36923 жыл бұрын
I don't know why am I studying all this in BCA 😭😭...save me.....this ...fourth sem is gonna break my ass but hey ty for this awesome video.... it really helped me
@IntegralsForYou3 жыл бұрын
Thank you! And good luck with your studies! 😉
@luluuu90962 жыл бұрын
Well at least you are in college.. I am still in school😃😂.. Regardless best of luck🤞
@ENG-Z3133 жыл бұрын
Thanks ALOT Buddy 😊
@IntegralsForYou3 жыл бұрын
My pleasure! 😉
@theengineeringstudent26784 жыл бұрын
I respect u man
@IntegralsForYou4 жыл бұрын
Thanks! 😀
@muazkhan90894 жыл бұрын
Can i do it by like sinx/cosx = tanx and then integrate tanx??
@IntegralsForYou4 жыл бұрын
Hi! Yes, I did it here 👉 kzbin.info/www/bejne/sHLYqKygp515jbs 😉
@shailpatel03304 жыл бұрын
*Just multiply and divide by two then do integeration of 2cosec2x*
@IntegralsForYou4 жыл бұрын
That works too! 😉
@ayoubab21205 жыл бұрын
is it correct like this ? : 1/sinxcosx = 2/sin2x with : t=2x => dx = 1/2 dt and we will have 1/sin(t) => sin(t)/1-cos(t)^2 =( -argth(cos(t)))' =(-argth(cos(2x)))' argth is the inverse of the fonction th(x)
@IntegralsForYou5 жыл бұрын
Hi Ayoub Ab! Yes it is correct! Integral of 1/sin(x)cos(x) dx = = Integral of 2/sin(2x) dx = = Integral of 1/sin(2x) 2dx = Substitution: t = 2x dt = 2dx = Integral of 1/sin(t) dt = = Integral of sin(t)/sin^2(t) dt = = Integral of sin(t)/(1-cos^2(t)) dt = = Integral of 1/(1-cos^2(t)) sin(t)dt = u = cos(t) du = -sin(t)dt ==> -du = sin(t)dt = Integral of 1/(1-u^2) (-du) = = - Integral of 1/(1-u^2) du = = - arctanh(u) = = - arctanh(cos(t)) = = - arctanh(cos(2x)) + C ;-D
@ayoubab21205 жыл бұрын
@@IntegralsForYou thank you but i have a question : if -arctanh(cos2x) and ln(tanx) have the same derivate so they are equal ??
@IntegralsForYou5 жыл бұрын
Not always. The truth is that they have the same derivative, I think in this case they are equal, but sometimes two solutions can be different. Let me write you a simple example: Integral of 1/(x+1)^2 dx = = Integral of (x+1)^-2 dx = = (x+1)^(-1)/(-1) = = -1/(x+1) + C So we have "-1/(x+1) + C" is a solution. However, "x/(x+1) + C" is also a solution. Derivative of -1/(x+1) + C = = Derivative of -(x+1)^(-1) + C = = -(-1)(x+1)^(-2) = = 1/(x+1)^2 Derivative of x/(x+1) + C = = [1*(x+1) - 1*x]/(x+1)^2 = = [ x + 1 - x]/(x+1)^2 = = 1/(x+1)^2 = Why is it possible? Because they are the same except for the constant, but it doesn't matter when derivating, because the derivative of any constant is zero. x/(x+1) + C = = (x+1-1)/(x+1) + C = = (x+1)/(x+1) - 1/(x+1) + C = = 1 - 1/(x+1) + C = = -1/(x+1) + C+1 = = -1/(x+1) + C' (where C'=C+1) Hope I answered your question ;-D
@ayoubab21205 жыл бұрын
@@IntegralsForYou thankyou very very much
@ernestschoenmakers81813 жыл бұрын
@@IntegralsForYou I was searching for a method to get this solution and found that if you take the step u=(x+1)/x then indeed you'll get: I = x/(x+1) + C.
@dictor328 жыл бұрын
eventually equal ln tan x + c
@IntegralsForYou8 жыл бұрын
Thank you, a note have been added at the end of the video! Thanks!
@yopajjapoy86804 жыл бұрын
Im late but why is it equal to ln tanx + c?
@ernestschoenmakers81814 жыл бұрын
@@yopajjapoy8680Use property of logarithms.
@mahmoudmoussa66234 жыл бұрын
Thank you so much!
@IntegralsForYou4 жыл бұрын
You're welcome! 😉
@sanatani_rashtr8 ай бұрын
1k th like by mee😮
@IntegralsForYou8 ай бұрын
Thank you so much 😀 You can like my videos on Derivatives ForYou, it would help a lot to grow my new channel! 👉www.youtube.com/@DerivativesForYou Thank you! ❤
@Hanzel15833 жыл бұрын
What i don’t get is if you derive ln(tan(x)) you will get 1/cosx.sinx so which is right???
@IntegralsForYou3 жыл бұрын
Yes, it is correct! ;-D
@fisicauned-xy9zw4 жыл бұрын
another solution is dividing by cos^2(x). so: 1/cos^2(x)/tg(x) and so on...
@IntegralsForYou4 жыл бұрын
Hi! I did it here => kzbin.info/www/bejne/sHLYqKygp515jbs Thanks for your comment!
@gairick95 жыл бұрын
very cool... where you're from?
@IntegralsForYou5 жыл бұрын
Hi Gairick, I'm from Spain, and you?
@yeganehyeganeh59276 жыл бұрын
Thank you veryyyyy much. It was great
@IntegralsForYou6 жыл бұрын
You're welcome Yeganeh Yeganeh! Thanks for your comment! ;-D
@thomasarch59526 жыл бұрын
An easier was is to note that sin x cos x = (1/2) sin 2x. Then the integral becomes 1/((1/2)sin2x) or 2/sin 2x or 2csc 2x dx which is ln /csc 2x - cot 2x/ + c. much simpler and straightforward than the video though both are correct.
@IntegralsForYou6 жыл бұрын
Hi Thomas Arch! You can also multiply by cos^2(x)/cos^2(x) and let 1/sin(x)cos(x) become 1/tan(x) 1/cos^2(x): kzbin.info/www/bejne/sHLYqKygp515jbs. I like when there are a lot of methods to solve the same integral :-D
@rudrangshu51513 жыл бұрын
Wonderful
@jhonatanninomartinez54826 жыл бұрын
Sen/cos = tan, integral of tangente = Ln|cosx|
@IntegralsForYou6 жыл бұрын
Hola Jhonatan, tu respuesta es casi correcta. La respuesta es -ln|cos(x)| + C (faltaba el menos delante y la constante de integración). Te dejo el enlace del video para que lo compruebes: Integral de tan(x) dx = kzbin.info/www/bejne/d5PFi4FvpZ2fj7s
@jhonatanninomartinez54826 жыл бұрын
Amigo una pregunta, porque no se puede hacer la integral de tangente directa (?) O sea en las tablas de integración esta la integral de tangente y pues es ln |cosx| + c , tengo esa duda gracias
@IntegralsForYou6 жыл бұрын
Hola, supongo que esta respuesta te la tiene que dar tu profesor, ya que me extraña mucho que en las tablas tengas que la integral de tangente es ln|cos(x)| + C. Una razón es porque la respuesta es incorrecta, debería ser -ln|cos(x)| + C, y la segunda razón es porque no me parece una integral directa, ya que hay que transformar tan(x) en sin(x)/cos(x) y luego tener en cuenta el signo menos, es decir, no es directa porque hay que manipularla antes de resolverla. Pero ya te digo que esto es mejor que lo hables con tu profesor y le preguntes cómo lo quiere él, porque es una respuesta un poco subjetiva. En lo que estaremos de acuerdo todos los seres humanos del planeta es que la respuesta lleva un menos delante, ya que la derivada de cos(x) es -sin(x) ;-D
@ernestschoenmakers81815 жыл бұрын
No, it's lnIsec(x)I + C.
@Khushi-do2vs3 жыл бұрын
Acha eve c k thk gye krde krde ...tnx lot g😂
@arielfuxman88684 жыл бұрын
what about integrating 2*csc2x
@IntegralsForYou4 жыл бұрын
Sorry, are you asking for the integral of 2*csc(2x) or the integral of 2*csc^2(x)?
@mrkiketo228 жыл бұрын
thx good for me
@IntegralsForYou8 жыл бұрын
You're welcome!! :-D
@veerrajput60076 жыл бұрын
Thanks
@IntegralsForYou6 жыл бұрын
You're welcome!
@veerrajput60076 жыл бұрын
Correct answer
@IntegralsForYou6 жыл бұрын
;-D
@alexandretaranoff7148 жыл бұрын
eventually equal to ln sin 2x ?
@IntegralsForYou8 жыл бұрын
I'm sorry but it is not right. Eventually: -ln(cos(x)) + ln(sin(x)) = ln(sin(x)) - ln(cos(x)) = ln(sin(x)/cos(x)) = ln(tan(x)) Thanks for watching!
@jaskaur89837 жыл бұрын
good
@theengineeringstudent26784 жыл бұрын
The way you think It surprises me lol
@IntegralsForYou4 жыл бұрын
;-D
@rishutechnical0.2486 жыл бұрын
Wrong answer
@IntegralsForYou6 жыл бұрын
Why?
@abinashmallik52723 жыл бұрын
Bot
@guillermovillalba85525 жыл бұрын
Thanks
@IntegralsForYou5 жыл бұрын
You're welcome!
@jayshankarsingh35415 жыл бұрын
Wrong answer
@IntegralsForYou5 жыл бұрын
Hi Jayshankar singh, I don't agree with you but maybe you're right. Why do you think so?
@ernestschoenmakers81813 жыл бұрын
@@IntegralsForYou Don't worry your answer is correct, maybe he thought that the answer should be lnItan(x)I +C but that's the same.