International Mathematical Olympiad | 1999 Q4

  Рет қаралды 19,930

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 76
@ivarangquist9184
@ivarangquist9184 3 жыл бұрын
Just wanted to say that this is IMO problem I've ever solved :D I'm very happy, but since I don't really have anyone to share it with, I will share it with you guys!
@leofilmont2631
@leofilmont2631 4 жыл бұрын
Amazing video !! This is definitely one of the hardest problems I came across on this channel. I ended up finding a much longer solution than this one (after struggling for hours and hours 😳), but not uninteresting for all that. I started by solving the case where x is divisible by p right the same way as in the video, wich allows then to assume that x is coprime with p, and that way to have m×x + n×p = 1 for some whole numbers m and n (Bezout). Then the fact that x^(p-1) divides (p-1)^x + 1 implies x| (p-1)^x +1 which implies x | (n^x) ×((p-1)^x +1) x| (np-n)^x + n^x x| (1 - mx -n)^x + n^x x| (1-n)^x + n^x and given that x is odd, x | n^x - (n-1)^x So I proved that this is impossible except if x=1, which is also a pretty interesting result : the difference of two consecutive numbers raised to the power x is not divisible by x unless x is equal to one. So yeah if anyone is interested in this problem...😁😁 it's worth a try. Great video anyway, great problems, great channel...hope it'll continue like that.
@rgqwerty63
@rgqwerty63 4 жыл бұрын
Small correction at 12:05, (q-1,x) = 1 because q is the smallest prime divisor of x, not because q is any old divisor of x. eg x=20 q=5
@rahafa3382
@rahafa3382 4 жыл бұрын
also q-1 is even , x is odd and q-1 is less than x
@kt3pkmn27
@kt3pkmn27 4 жыл бұрын
A (probably) easier way to finish is to square both sides by the time we get to: (p-1)^x = -1(mod q) (p-1)^(2x) = 1(mod q) By Fermat's Little, (q-1) must divide 2x (do you see why?). Since q is the smallest odd prime divisor of x, (q-1) will not divide x (on other problems, be careful when q can be 2); Therefore, (q-1) must divide 2. It follows q=3. Once we get q | p, we're done.
@otakurocklee
@otakurocklee 4 жыл бұрын
I like your idea, but I think you're slightly off. We don't know that (q-1) must divide 2x from Fermat's little theorem. We know that a common factor d of (q-1) and 2x has (p-1)^d = 1 (mod q). The only common factors of (q-1) and 2x are 1 and 2. We know that since (p-1)^x = -1(mod q), we know d is not 1. Hence d is 2 and (p-1)^2 = 1 (mod q). That gives us (p-1) = -1 (mod q). So we get p=q. But we still need the additional part in the video to get p=3.
@kt3pkmn27
@kt3pkmn27 4 жыл бұрын
@@otakurocklee You're right. I was trying to use the concept of orders, but I think I wasn't too careful about it. Here's a more correct line of reasoning to get q=3: x = 0 (mod q) (x-1) = -1 (mod q) (x-1)^2 = 1 (mod q) We deduce 2 is the order of (x-1) mod q; hence, 2 | q-1 q=3.
@otakurocklee
@otakurocklee 4 жыл бұрын
@@kt3pkmn27 But how do you get from 2|q-1 to q=3. 2|q-1 can also mean q=7 or q=11.
@Miguel-xd7xp
@Miguel-xd7xp 4 жыл бұрын
@@otakurocklee q is the smallest prime that q|x I think that is for that
@digxx
@digxx 2 жыл бұрын
@@Miguel-xd7xp I don't see it. q=7 could be the smallest prime...
@antoniopalacios8160
@antoniopalacios8160 4 жыл бұрын
It is really elegant how you resolve the ambiguity (p-1) congruent with +- 1 (mod q), obtaining p-1 congruent with -1 (mod q) by having to be a=odd.
@limerent
@limerent 4 жыл бұрын
Amazing solution! It was an unexpected use of Bezouts gcd trick, good job.
@leif1075
@leif1075 4 жыл бұрын
Is that the only solution?
@leif1075
@leif1075 4 жыл бұрын
Isnt there a way to solve it without Bezoutz trick?
@supercube3523
@supercube3523 4 жыл бұрын
The combination of Bezout's with Fermat is so beautiful!! By the way, it seems we can also get to x=p without using Bezout's theorem. starting from (p-1)^x + 1 = 0 (mod x) we have (p-1)^x = -1 (mod x) and then x will not divide p-1 Fermat's little therom: (p-1)^(x-1) = 1 (mod x) (p-1)^x = p-1 (mod x) and (p-1)^x = p-1 = -1 (mod x) p=0 (mod x) x will divide p (odd prime) and x>=3 means x = p
@tonyha8888
@tonyha8888 4 жыл бұрын
You assume x is a prime, which is not true.
@appleyuan8710
@appleyuan8710 4 ай бұрын
@@tonyha8888 x is actually a prime when p >= 3, x > 1. Obviously, x is odd, since (p - 1)^x + 1 is odd. A more reasonable way using Fermat's little theorem might be: Let x = m*n where m is an odd prime factor and n is an odd factor. (p-1)^x + 1 can be divided by x means it can be divided by m. We have (p-1)^x + 1 = (p-1)^(m*n) + 1 = ((p-1)^m)^n + 1 = 0 (mod m). According to Fermat's little theorem: (p-1)^m = (p-1) (mod m) and we have (p-1)^n = -1 (mod m). Since n is odd, p - 1 = -1 (mod m) and p = 0 (mod m), which means p can be divided by m (>=3). So m = p and x = np. Note that x
@josephgrossenbacher7642
@josephgrossenbacher7642 4 жыл бұрын
Michael , yours are some of the best maths-vids here on "youtube" , so thanks : i always enjoy them if i can spare some time ... !!!
@sirgog
@sirgog 4 жыл бұрын
A problem from my second IMO! Got 5/7 for it, which usually means I solved most of the problem but missed a non-trivial but not too complex case. Can't remember the solution I had in the exam. Questions 1 and 3 were so much more memorable from this IMO.
@adrianamor8472
@adrianamor8472 4 жыл бұрын
11:54 let x = 54, q = 3, then we have x = 18 q, so q | x. Also q - 1 = 2 and q-1 shares a common divisor with x, which is 2. I think he should be more clear when these facts are stated as to what conditions exactly x and q must meet (independently of previous facts assumed in a different context).
@최용휘-n8k
@최용휘-n8k 4 жыл бұрын
재밌어요! 24분동안 지루하지 않게 이해가 잘 되면서 들었습니다. 감사해요
@hoangkhongngo
@hoangkhongngo 4 жыл бұрын
In fact, Order of an integer and Lifting the exponent Lemma can be used to shorten the solution. Besides, using the above tools helps us ignore the hypothesis that x
@3manthing
@3manthing 4 жыл бұрын
Very nice. Love the approach and your explanation. :)
@sumukhhegde6677
@sumukhhegde6677 4 жыл бұрын
Great!! Please make videos more of this kind
@sumukhhegde6677
@sumukhhegde6677 4 жыл бұрын
@Bigblrman75 Surya 😁😁😁
@rd-bz8dg
@rd-bz8dg 4 жыл бұрын
Good work man! Luv ur vids 😊😀😄
@jakobus5098
@jakobus5098 4 жыл бұрын
LTE destroy the problem : suppose p > 3 and so x odd and > 1. Since x^(p-1) divides (p-1)^x + 1, we have v_p(x^(p-1)) = (p-1)v_p(x) = 1, this is trivially false, so v_p(x) must be equal to 0. So p doesnt divide x and x^(p-1), but divides (p-1)^x + 1 (since v_p((p-1)^x +1)>0), impossible bc x > 1. So p
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
24:09
@aleksapupovac
@aleksapupovac 4 жыл бұрын
Nice
@stefanstojkovic8712
@stefanstojkovic8712 4 жыл бұрын
Nice
@cletushumphrey9163
@cletushumphrey9163 4 жыл бұрын
Nice
@dheerdaksh
@dheerdaksh 4 жыл бұрын
Nice
@helo3827
@helo3827 3 жыл бұрын
Nice
@ArunIyerS
@ArunIyerS 4 жыл бұрын
Very interesting use of Bezout's with Fermat!
@POOJASingh-mq6kx
@POOJASingh-mq6kx 4 жыл бұрын
Seeing your videos makes me feel that even imo problems are very easy😂
@drpkmath12345
@drpkmath12345 4 жыл бұрын
Love number theory for sure!
@lucassandleris4486
@lucassandleris4486 4 жыл бұрын
Maybe an easier way to finish it off could've been to use Lifting the expoment Lemma, by arguing that vp(1^p+(p-1)^p)=vp(p)+vp(p-1+1)=2 therefore p-1≤2 thus p≤3. Checking the case p=3 finishes it.
@shokan7178
@shokan7178 4 жыл бұрын
Small nitpick: Whenever you say "Give this problem ago with the hints", you have stood in front of the problem for about a minute by now and I can't remember the problem! :)
@yashvardhan2093
@yashvardhan2093 4 жыл бұрын
Sir I did that part you told if x=2 then the divisor is even but that implies that the rhs is also even now -2(p-1) is even and for the entire term to be even p^2 is even but that clearly implies p =2 and x=2 is only such solution
@irbesbayan-aula7374
@irbesbayan-aula7374 4 жыл бұрын
Brilliant Solution. Thank You.
@vtvtify
@vtvtify 4 жыл бұрын
12:51 but what about the case where the x coefficient is negative and the q-1 coefficient is positive?
@yassinezaoui4555
@yassinezaoui4555 4 жыл бұрын
Excellent 👏👏👏
@JoGurk
@JoGurk 4 жыл бұрын
how the hell are you supposed to solve this right away, even if you are IMO partitipant?!
@justforfun2238
@justforfun2238 4 жыл бұрын
Why would u expect an IMO participant to solve it right away?
@nurtasshyntas7745
@nurtasshyntas7745 4 жыл бұрын
@@justforfun2238 because it's problem #4. I would say that it's just experience - one familiar with orders modulo primes will in no time recognize the solution.
@roboto12345
@roboto12345 4 жыл бұрын
Literally you just play with LTE lemma if you have no idea of how to proceed and as @Nurtas Shyntas said it is just order of an element
@leif1075
@leif1075 4 жыл бұрын
@@nurtasshyntas7745 but if you have NEVER heard of Fermat or Bezout isnt this impossible tonsolve and so not a fair test of intelligence or problem solving ability?
@justforfun2238
@justforfun2238 4 жыл бұрын
@@leif1075 mathematical knowledge is definitely needed in IMO
@ThePharphis
@ThePharphis 4 жыл бұрын
This one seems difficult. Thanks for sharing
@petros_adamopoulos
@petros_adamopoulos 4 жыл бұрын
Could we call it a "Chalk drop"?
@VishnuSrivatsava
@VishnuSrivatsava 4 жыл бұрын
what an amazing approach
@rogueartist9419
@rogueartist9419 4 жыл бұрын
isnt bezouts Identity ax+by=1 ... why he wrote ax-by=1?
@aweebthatlovesmath4220
@aweebthatlovesmath4220 2 жыл бұрын
bezouts identity is ax+by=gcd(x,y) He decided to take b a negative number that's allowed if we don't have b.
@djvalentedochp
@djvalentedochp 4 жыл бұрын
I am jubilant right now
@leif1075
@leif1075 4 жыл бұрын
Why?
@djvalentedochp
@djvalentedochp 4 жыл бұрын
@@leif1075 because of the stunning solution Michael Penn had to this problem
@leif1075
@leif1075 4 жыл бұрын
@@djvalentedochp oh ok
@rksemwal8116
@rksemwal8116 4 жыл бұрын
yo man no views?
@donaldbiden7927
@donaldbiden7927 4 жыл бұрын
how r u 1 week earlier ? u a patreonn ?
@djvalentedochp
@djvalentedochp 4 жыл бұрын
Wait.... how is that possible? 😂😂
@xriccardo1831
@xriccardo1831 4 жыл бұрын
He leaves them unlisted and then makes them public
@djvalentedochp
@djvalentedochp 4 жыл бұрын
Oh now I see
@g_g9078
@g_g9078 2 жыл бұрын
1 is a prime number, kinda cringe
A floor problem from the 1998 IMO shortlist.
12:50
Michael Penn
Рет қаралды 20 М.
Croatian Mathematical Olympiad | 2005 Q11.1
18:33
Michael Penn
Рет қаралды 32 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
International Math Olympiad | 2006 Question 4
20:23
Michael Penn
Рет қаралды 179 М.
The unexpectedly hard windmill question (2011 IMO, Q2)
16:03
3Blue1Brown
Рет қаралды 5 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
New Zealand Mathematical Olympiad 2019 Question 5
18:42
Michael Penn
Рет қаралды 65 М.
Algebra vs Analysis
19:58
Struggling Grad Student
Рет қаралды 47 М.
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
Irish Mathematical Olympiad | 2009 Q3
12:47
Michael Penn
Рет қаралды 52 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 437 М.
Irish Math Olympiad | 2009 Question 3
20:14
Michael Penn
Рет қаралды 117 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН