Intro to graph neural networks (ML Tech Talks)

  Рет қаралды 183,528

TensorFlow

TensorFlow

Күн бұрын

Пікірлер: 111
@TheStargazer1221
@TheStargazer1221 9 ай бұрын
Changed the literature, still incredibly humble. Great representation of a scientist.
@victor-iyi
@victor-iyi 2 жыл бұрын
Wow, I used to fear Graph Neural Networks thinking it was some sort of monster. But this presentation has changed everything for me. Excellent job Petar! Thank you, thank you so much!
@SirajFlorida
@SirajFlorida 6 ай бұрын
It's taken me a while to discover your lectures, but I can't thank you enough for creating and posting them. Thank you.
@giovannibianco5996
@giovannibianco5996 8 ай бұрын
Great video Petar; now I understood everything and I will never ever have any kind of fear towards the gat. Now I am friend with the gat. We hang around often and apply leaky relu to beers in a bars. When we cross the streets he always reminds me to pay attention to the other edges and it is also very computationally efficient. Love it!
@MMUnubi
@MMUnubi 7 ай бұрын
next level stuff right here
@Amapramaadhy
@Amapramaadhy 3 жыл бұрын
Really great content and presentation. The analogy between convolutional NN and GNN is one of the best I have heard. Petar should do more lectures
@jingzhitay6736
@jingzhitay6736 3 жыл бұрын
Thank you for this introduction! This might be the last GNN overview that I need to watch :)
@WickedEssi
@WickedEssi 2 жыл бұрын
Great explanation. Very calm and precise. Was a pleasure to listen to.
@muhammadharris4470
@muhammadharris4470 3 жыл бұрын
Thanks petar. Really love this intro to GNN been hearing about them for a while. needs got to know the actual graph computations and matrices with the context of ML
@danielkorzekwa
@danielkorzekwa 2 жыл бұрын
Great talk, excellent starting point to Graph Neural Networks. Presentation first + hands on tutorial.
@fredquesnel1855
@fredquesnel1855 2 жыл бұрын
Thanks for the great tutorial! Straight to the point, easy to understand, with an exercice that is easy to follow!
@nikolayfx
@nikolayfx 3 жыл бұрын
Thanks Petar for presenting GNN
@Sangel67rus
@Sangel67rus 2 жыл бұрын
The brilliant explanations! Thank you, Petar!
@dori8118
@dori8118 3 жыл бұрын
Thanks for video i was in love with knowledge graphs, i am trying to back to it some day.
@rogiervdw
@rogiervdw 3 жыл бұрын
Marvellous explanation, thank you. Typo on 17:47 sum over j \in N_i ?
@jimlbeaver
@jimlbeaver 3 жыл бұрын
Thanks...great stuff. I really appreciate you taking a slow and deliberate approach to this.
@ihmond
@ihmond 3 жыл бұрын
Thank you for your sample code! Most of models I found are written by pytorch. So, this keras model can be my basic reference.
@NoNTr1v1aL
@NoNTr1v1aL 2 жыл бұрын
Absolutely amazing video!
@peterkonig9537
@peterkonig9537 2 жыл бұрын
Very clear presentation. It nicely combines concepts and exercises.
@LouisChiaki
@LouisChiaki 3 жыл бұрын
Glad that Google improve the ETA of my home city - Taichung! The traffic there was really bad and it must be really difficult for the model 😂 .
@MMUnubi
@MMUnubi 7 ай бұрын
lol
@nastaranmarzban1419
@nastaranmarzban1419 3 жыл бұрын
Hi, hope you're doing well, i have a problem, when i use "Spektral datasets.citation.load_data" I receive an error "Spektral datasets.citation has no attribute 'load_data' " Would anyone help me with this problem? Tkanks🙏
@AlexMuresan
@AlexMuresan 3 жыл бұрын
So, at the time of this comment (spektral.__version__ == 1.0.8), loading the cora dataset would be something like this: cora_dataset = spektral.datasets.citation.Citation(name='cora') test_mask = cora_dataset.mask_te train_mask = cora_dataset.mask_tr val_mask = cora_dataset.mask_va graph = cora_dataset.graphs[0] # zero since it's just one graph inside, there could be multiple for other datasets features = graph.x adj = graph.a labels = graph.y Hope this is helpful!
@phillibob55
@phillibob55 2 жыл бұрын
@@AlexMuresan Thankyou s much man!
@DefendIntelligence
@DefendIntelligence 3 жыл бұрын
Thank you it was really interesting
@frankl1
@frankl1 3 жыл бұрын
Thanks for this intro to GNN, I enjoyed it a lot
@mytelevisionisdead
@mytelevisionisdead 3 жыл бұрын
Clearly explained! even more impressive given the information density of the content..!
@phillibob55
@phillibob55 2 жыл бұрын
Those getting the error at load_data(), to quote @Alex Muresan's comment: So, at the time of this comment (spektral._version_ == 1.0.8), loading the cora dataset would be something like this: cora_dataset = spektral.datasets.citation.Citation(name='cora') test_mask = cora_dataset.mask_te train_mask = cora_dataset.mask_tr val_mask = cora_dataset.mask_va graph = cora_dataset.graphs[0] # zero since it's just one graph inside, there could be multiple for other datasets features = graph.x adj = graph.a labels = graph.y Hope this is helpful!
@ayanansari4463
@ayanansari4463 2 жыл бұрын
it keeps returning /usr/local/lib/python3.7/dist-packages/scipy/sparse/_index.py:126: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient. self._set_arrayXarray(i, j, x) not sure it this is right?
@phillibob55
@phillibob55 2 жыл бұрын
@@ayanansari4463 it'll give this warning, but it'll still work.
@cybervigilante
@cybervigilante 3 жыл бұрын
Consider graphs on our level - and even people are graphs. They exist only as nodes in a higher level network. But the edges of the higher level do not connect directly to any node in the lower level graph, otherwise you just have a lower level graph. The edges exert a Bias. Biases are common in nature - hormone biases, electrical biases, thermal biases, etc. However, there is a counter-bias feedback from the lower level graph, which can be any organism or complex structure, which can cause some higher level edges to either disconnect or connect in a benign or malign fashion, changing the bias. We provide the feedback. This explains very many things.
@giorgigona
@giorgigona 2 жыл бұрын
Where can I see the presentation slides?
@carltonchu1
@carltonchu1 3 жыл бұрын
I just saw you on our DeepMind internal talks , then KZbin recommended this video to my personal account ?
@mohajeramir
@mohajeramir 3 жыл бұрын
This is so awesome. Excellent presenter
@stephanembatchou5300
@stephanembatchou5300 3 жыл бұрын
Excellent content. Thank You!
@nabeelhasan6593
@nabeelhasan6593 3 жыл бұрын
This is a very good series
@toandaominh1997
@toandaominh1997 3 жыл бұрын
Thanks for the video. You bring useful knowledge
@AliMohammedBakhietIssa
@AliMohammedBakhietIssa 9 ай бұрын
Many Thanks for your efforts :)
@payamkhorramshahi5726
@payamkhorramshahi5726 2 жыл бұрын
Very transparent tutorial ! Thank you
@sleeping4cat
@sleeping4cat 2 жыл бұрын
Waiting eagerly for a custom Tensorflow Library on GNN!!
@margheritamaraschini3958
@margheritamaraschini3958 2 жыл бұрын
Great presentation. If it can be useful, I may have found some small typos: - "toward a simple update rule" A~=A~+I should be A~=A+I. Also, in one of the instances W should be transpose (W) - "GCN" The subscript of the sum I think it's the other way around
@apaarsadhwani
@apaarsadhwani Жыл бұрын
Thanks, that was useful!
@Yuri-xm9rx
@Yuri-xm9rx 2 ай бұрын
Wonderful tutorial
@masudcseku
@masudcseku 3 жыл бұрын
Thanks Petar, very comprehensive tutorial! It will be great if you can make a tutorial on GAT ;)
@michielim
@michielim 2 жыл бұрын
This was so so useful - thank you!
@randerson1184
@randerson1184 3 жыл бұрын
I'm going to get a TON of use out of these! Thanks!
@ExperimentalAIML
@ExperimentalAIML Жыл бұрын
Good explanation
@squarehead6c1
@squarehead6c1 10 ай бұрын
Great tutorial!
@turalsadik81
@turalsadik81 3 жыл бұрын
Where can I find notebook of the colab exercise?
@turalsadik81
@turalsadik81 2 жыл бұрын
anybody?
@timfaverjon3597
@timfaverjon3597 2 жыл бұрын
I, thank you for the video, can I find the colab somewhere ?
@dennisash7221
@dennisash7221 3 жыл бұрын
I am trying to follow the example but I get the following error: AttributeError: module 'spektral.datasets.citation' has no attribute 'load_data' Anyone know why this is happening, I can only see load_binary in the attributes list.
@sanketjoshi8387
@sanketjoshi8387 3 жыл бұрын
Did you fix the issue?
@dennisash7221
@dennisash7221 3 жыл бұрын
@@sanketjoshi8387 I have not found out what the issue is. It might be something to do with some upgrades to Python, NP or Spektral ... I am hoping someone can help
@satyabansahoo1862
@satyabansahoo1862 3 жыл бұрын
@@dennisash7221 check the version of spektral, he is using its 0.6.2 so try using that
@DanielBoyles
@DanielBoyles 3 жыл бұрын
# this should do it in Spektral Version 1.0.6 # I've used the same variable names, but haven't gone through the rest of the colab tutorial as yet from spektral.datasets.citation import Cora dataset = Cora() graph = dataset[0] adj, features, labels = graph.a, graph.x, graph.y train_mask, val_mask, test_mask = dataset.mask_tr, dataset.mask_va, dataset.mask_te
@dennisash7221
@dennisash7221 3 жыл бұрын
@@DanielBoyles awesome it seems to work, I will try to run the rest of the NB later but looks like this did the trick.
@sachinvithubone4278
@sachinvithubone4278 3 жыл бұрын
Thanks for video. I think GNN can be used more in health care system.
@innovationscode9909
@innovationscode9909 3 жыл бұрын
Thanks. Great stuff. I really LOVE ML
@Max-eo6vx
@Max-eo6vx 3 жыл бұрын
Thank you Peter. Would you share the code or notebook?
@cetrusbr
@cetrusbr 2 жыл бұрын
Fantastic Lecture! Thanks Petar, congrats for the amazing job!
@miladto
@miladto 3 жыл бұрын
Thank you for this great Presentation. Can you please share the Colab?
@ghensao4027
@ghensao4027 2 жыл бұрын
Typo in 17:35 should iterate j over neighborhood of node N_i
@thefastreviewer
@thefastreviewer 2 жыл бұрын
Is it possible to share the Colab file as well?
@fahemhamou6170
@fahemhamou6170 2 жыл бұрын
تحياتي الخالصة thank you
@ernestocontreras-torres9188
@ernestocontreras-torres9188 3 жыл бұрын
Great material!
@brunoalvisio
@brunoalvisio 2 жыл бұрын
Thank you for the great intro! Qq: In the equation for GCN is the bias being omitted just for clarity?
@39srini
@39srini 3 жыл бұрын
Very good useful video
@_Intake__Gourab
@_Intake__Gourab 3 жыл бұрын
Hello, I am doing image classification using gcn, but I failed to understand how to use image data in a gcn model. I need some help!
@philtoa334
@philtoa334 Жыл бұрын
Nice.
@BrendanW-c9l
@BrendanW-c9l Жыл бұрын
Please correct me if I'm wrong, Petar, but in the tutorial, it looks like during training we are including the full graph (including test nodes) in the node-pooling step? This looks like information leakage--is there some reason I'm missing why it's considered allowed here?
@petarvelickovic6033
@petarvelickovic6033 Жыл бұрын
This is correct, and it is only allowed under the "transductive" learning regime. In this regime, you're given a static graph, and you need to 'spread labels' to all other nodes. Conversely, in 'inductive' learning you are not allowed access to test nodes at training time. Naturally, the transductive regime is much easier, as you can use a lot of methods that exploit the properties of the graph structure provided. In inductive learning, instead, your method needs to in principle be capable of generalising to arbitrary, unseen, structures at test time.
@rahulseetharaman4525
@rahulseetharaman4525 2 жыл бұрын
Sir, could you please explain the part where the mask is divided by the mean ?
@twitteranalyticsbyad3969
@twitteranalyticsbyad3969 3 жыл бұрын
Changing Cake to Pie, Nice move :D You can only understand if you have seen Jure Leskovec's lectures.
@ThanhPham-xz2yo
@ThanhPham-xz2yo 3 жыл бұрын
thanks for sharing!
@RAZZKIRAN
@RAZZKIRAN 3 жыл бұрын
can we apply on text classifcation problems like sentiment analysis, online hate classifcations?
@MrWater2
@MrWater2 6 ай бұрын
incredible good!!!
@pushkinarora5800
@pushkinarora5800 2 жыл бұрын
Its a Binge watch!! epic!!
@phaZZi6461
@phaZZi6461 3 жыл бұрын
thanks a lot!
@slkslk7841
@slkslk7841 2 жыл бұрын
What are Inductive problems?
@halilibrahimakgun7569
@halilibrahimakgun7569 Жыл бұрын
Can you share colab notebook
@l.g.7694
@l.g.7694 2 жыл бұрын
Really nice presentation! A question regarding the colab: Anyone else having the problem that the validation accuracy stays at around 13%?
@l.g.7694
@l.g.7694 2 жыл бұрын
This ... is unfortunate. I made a typo (mask = tf.reduce_mean(mask) instead of mask /= tf.reduce_mean(mask)) which I literally noticed after hitting send. Now it works.
@vasylcf
@vasylcf 3 жыл бұрын
Thanks!
@sunaryaseo
@sunaryaseo 3 жыл бұрын
A nice tutorial, now I am thinking about how to implement GNN for signal processing such as classification/prediction problems. How do I design the graph, nodes, and edges?
@vibrationalmodes2729
@vibrationalmodes2729 2 жыл бұрын
Strong last name dude (just started video, was my first impression 😂)
@mohammadforutan955
@mohammadforutan955 2 жыл бұрын
very useful
@张凌峰-c2j
@张凌峰-c2j 2 жыл бұрын
Could I ask why mask should be divided by mean? Thanks
@AvinashRanganath
@AvinashRanganath 9 ай бұрын
I think it is to prevent the model from overfitting to nodes with a larger number of edges.
@werewolf_13
@werewolf_13 3 жыл бұрын
Hey insightful lesson! Can anyone give me an idea on how to prepare a dataset for GNN? especially for recommendation systems
@jtrtsay
@jtrtsay 3 жыл бұрын
Love from Taichung city, Taiwan 🇹🇼
@ScriptureFirst
@ScriptureFirst 3 жыл бұрын
A lovely city in an island nation 🇹🇼
@quickpresent8987
@quickpresent8987 3 жыл бұрын
Is anyone write the colab code following this video, I just get an error for the 'matmul
@phillibob55
@phillibob55 2 жыл бұрын
Is anyone else getting accuracies higher than 1? (I know something's wrong but I can't figure it out)
@taruneswar9036
@taruneswar9036 3 жыл бұрын
🙏🙏
@wibulord926
@wibulord926 2 жыл бұрын
your source code pls
@iskrabesamrtna
@iskrabesamrtna 2 жыл бұрын
inferring soft adjacency -- what does that even mean?
@desrucca
@desrucca Жыл бұрын
Total nodes = 2708 nodes Train = 140 nodes Valid = 500 nodes Test = 1000 nodes Where did the remaining 1068 nodes gone?
@petarvelickovic6033
@petarvelickovic6033 Жыл бұрын
They're still there -- their labels are just not assumed used for anything (training or eval) in this particular node split.
@asedaradioshowpodcast
@asedaradioshowpodcast 2 жыл бұрын
27:35
@cia05rf
@cia05rf 2 жыл бұрын
Great video, doesn't work with spektral 1.2.0. To save downgrading this can be used: ``` cora = spektral.datasets.citation.Cora() train_mask = cora.mask_tr val_mask = cora.mask_va test_mask = cora.mask_te graph = cora.read()[0] adj = cora.a features = graph.x labels = graph.y ```
@muhannadobeidat
@muhannadobeidat 2 жыл бұрын
Thanks for posting this. It's a time saver!
@jackholloway7516
@jackholloway7516 3 жыл бұрын
1st
@phillibob55
@phillibob55 2 жыл бұрын
If anyone gets the "TypeError: sparse matrix length is ambiguous; use getnnz() or shape[0]" error at the matmul, use adj.todense() while calling the train_cora() method.
@oladipupoadekoya1559
@oladipupoadekoya1559 2 жыл бұрын
Hello sir, Please can i have your email sir. i need you to explain how to represent my optimisation problem in GNN
@bdegraf
@bdegraf Жыл бұрын
Is there a link to the Colab code? I see references to it but not finding it.
A friendly introduction to linear algebra for ML (ML Tech Talks)
38:27
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 843 М.
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
Graph Neural Networks - a perspective from the ground up
14:28
Theoretical Foundations of Graph Neural Networks
1:12:20
Petar Veličković
Рет қаралды 94 М.
An Introduction to Graph Neural Networks: Models and Applications
59:00
Microsoft Research
Рет қаралды 295 М.
Understanding Graph Attention Networks
15:00
DeepFindr
Рет қаралды 91 М.
Graph Neural Networks: A gentle introduction
29:15
Aladdin Persson
Рет қаралды 49 М.
Building AI models for healthcare (ML Tech Talks)
48:03
TensorFlow
Рет қаралды 73 М.
Lean for Scientists and Engineers, Summer 2024 - Lecture 1
2:01:55
Tyler Josephson
Рет қаралды 259
The Boundary of Computation
12:59
Mutual Information
Рет қаралды 1 МЛН
GEOMETRIC DEEP LEARNING BLUEPRINT
3:33:23
Machine Learning Street Talk
Рет қаралды 367 М.
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН