The most thorough and clear explanation ever. Can't wait for the next video!
@DrTrefor4 жыл бұрын
Thank you! Follow up video coming next week:)
@paulkaranja926411 ай бұрын
You just made my life better all the way in a small country found in Africa called Kenya. Thank you.
@SAAARC4 жыл бұрын
A subscription to your channel is the gift that keeps on giving.
@DrTrefor4 жыл бұрын
Glad you're enjoying!
@bijanghofranian57823 жыл бұрын
I was searching for "Wiener-Lévy process which is also a Markov process" but luckily I ended up here, a wonderful serendipity! Thanks for the simple and concise explanation Dr. Trefor.
@joevanderstelt81432 жыл бұрын
Subscribed to this channel after about 30 seconds.... amazing
@MrChinook19912 жыл бұрын
Very well explained mate. Videos like these are a great into to a statistical topic and is a great foundation to dive deeper into the math behind it
@mapmap123456 Жыл бұрын
one of the best explanations about Markov chains on youtube. thank you
@franklinoduro7274Ай бұрын
The best math video so far on Markov chains
@MrBitviper Жыл бұрын
amazing explanation. you have a knack for making these difficult topics understandable thank you so much for this
@DrTrefor Жыл бұрын
Glad it was helpful!
@PrpleHatMan Жыл бұрын
A very well presented and insightful lesson. Thank you for the 2 part explanation!
@kaniki_the_problem2 жыл бұрын
You a natural. Thanks , preparing for Risk Modeling and Survival analysis actuarial exam
@aqeelzeid243 жыл бұрын
I watched around 5 videos , this explained it the best !! thanks alot
@abdullahbinnaeem950211 ай бұрын
Never seen such explanation before. Amazing Sir
@alfonsorodriguezruiz900720 күн бұрын
Greetings teacher. Thanks for sharing your amazing classes.
@byronwilliams79772 жыл бұрын
Love your videos man, keep up the great work. You and Presh Talwalker are the best.
@camsasuncion4 жыл бұрын
I really appreciate the clarity of the explanation. I am now a subscriber and a fan! Thank you.
@DrTrefor4 жыл бұрын
Thanks for the sub!
@thedigitalphysicist3 жыл бұрын
A simple explanation of something that could be very complexly understood. Thank you, Dr. Bazett
@ridwanhusainishraq2 жыл бұрын
what a sarcasm.
@imdadood57053 жыл бұрын
Very clear explanation with easy examples. Thank you!
@Ferdimitry4 жыл бұрын
Perfect. Dr. Trefor you are the best!
@DrTrefor4 жыл бұрын
Thank you, glad you enjoyed!
@priyankashaw30103 жыл бұрын
really helped to understand this concept in the first go
@genuinebombayite19663 жыл бұрын
This was such a wonderfully clear explanation. Thank you so much!
@DrTrefor3 жыл бұрын
Glad it was helpful!
@genuinebombayite19663 жыл бұрын
@@DrTrefor Not to get too greedy, but can you do one on Hidden Markov models? Thanks a bunch again!
@HA-zd5gx3 жыл бұрын
I'm happy tha I found this channel. thank you!
@emrahakcay3 ай бұрын
I wathed many videos, but I understand mc at this video. Perfect explaination bro hank u
@eleazertham50334 жыл бұрын
Thanks I needed this for my upcoming exams :-)
@thepresistence59352 жыл бұрын
Please don't go to MIT, Standford at all, be here. We need you.
@catcen96312 жыл бұрын
incredible video with a super clear explanation!
@QuantiFaiPortfolio6 ай бұрын
Love this!!!
@jesseluinstra11922 жыл бұрын
Thank you. This was a very good explanation
@randa_alwadi Жыл бұрын
Your explanation is super!
@eyakhamassi8748 Жыл бұрын
Thank you soo much this is the best explanation ever❤❤❤
@satyambhardwaj22894 жыл бұрын
absolute delight.. exactly at the time I wanted it for an AI implementation
@ipshitaghosh26563 жыл бұрын
Rare moments.. when you understand in the first go.
@freedmoresidume3 жыл бұрын
Crystal clear explanation , thank you Dr.
@imad_uddin3 жыл бұрын
This was strikingly clear and fresh. Loved it!
@sjchsbc4 жыл бұрын
Thank you for making this.
@anishjoshi19992 жыл бұрын
Thank you so much Doctor 😍
@SonaliAcharya-ry8xg3 ай бұрын
Very good explanation 👏
@TPLCreationLoft Жыл бұрын
Best explanation of Markov Chains I've seen. Most videos don't explain how you get the initial probabilities, but from your explanation I understood that they're equality distributed at outset (that is if I understood correctly) and can stabilize as frequency outcomes over iterations . Thank you. However, one thing that wasn't too clear on was if a Markov chain only depends on the current state of predicting future states, wouldn't a tree that predicts into the near or distant future states not be using the Markov property since there's a whole chain of dependencies?
@maulikjadav96733 жыл бұрын
Awesome explanation, Thank you sir. 👍
@Storyguy2 жыл бұрын
Great Sir.... the explanation is ridiculous ❤❤
@drachenschlachter6946 Жыл бұрын
A very good explanation!
@sanklink3 жыл бұрын
Awesome explanation!
@Shaunmcdonogh-shaunsurfing2 жыл бұрын
Fantastic explanation
@Big_Mo_Zak Жыл бұрын
Very well explained.thank you
@jenishghimire6678 Жыл бұрын
So good way of explanation
@TheMostafa500011 ай бұрын
amazing explanation.
@rashasulieman25253 жыл бұрын
Wow! Just beautiful! Love way you explain things!
@DrTrefor3 жыл бұрын
Thank you so much!
@SnowyMan953 ай бұрын
Great video. Thanks!
@mcyz78713 жыл бұрын
awesome job
@HylianEvil4 жыл бұрын
If only the next video was out so I could make a Markov chain to predict when the next video will be out
@DrTrefor4 жыл бұрын
Haha, well past behavior indicates I release a lot of videos on Monday’s, but you can’t look at that unless you model with a non-Markov process;)
@othmanaljbory36492 жыл бұрын
عاشت الايادي استاذ شكرا جزيلا بالتوفيق والنجاح
@continnum_radhe-radhe Жыл бұрын
Wow 🔥🔥🔥
@giovanniberardi41342 жыл бұрын
I really appreciated your video. I have a question: in the market example with a drift rate of zero the transition probabilities would have been even? I mean 50 % probabilities of transition from bull to bear and vice versa? Thank you very much
@sebaaismail19514 жыл бұрын
Thank you dr, yours vidéo are usefull.
@DrTrefor4 жыл бұрын
Thank you!
@joicet52303 жыл бұрын
nice explanation for a beginner like me
@admiralhyperspace00154 жыл бұрын
Can't appreciate enough your videos. Plz keep making them, and I am second. hehehe
@DrTrefor4 жыл бұрын
Will do! 2nd is still pretty good, haha:D
@SHAHHUSSAIN4 жыл бұрын
Crown of mathematics🥰🥰💝💝♥️♥️
@DrTrefor4 жыл бұрын
haha, thank you Shah!
@peachiichaii63752 жыл бұрын
oh my for this was so helpful thank you so much
@melroyrodrigues5975Ай бұрын
Thank for the wonderful video. It had a really crisp and clear explanation. I had a doubt. You mentioned that Markov chains don't use any information from the past. So in the bull and bear example, it should have been 50% chance of a bull staying a bull and 50% of bull changing to a bear (Very similar to your city-train example where you inspect the possibilities at any given station) So why did you use past results of 75% chance of a bull staying a bull into the computation? Thank you!
@OfferoC4 жыл бұрын
Awesome thanks
@ccuuttww4 жыл бұрын
You may also talking about how to find the stable status with linear algebra PDP^-1 which related to your series
@DrTrefor4 жыл бұрын
Indeed, the next video is going to cover the connection to linear algebra although I won’t get to diagonalization for a while yet
@Salvador-xy5es2 жыл бұрын
maan you are awsome THANK YOU!!!
@Sam-fv4xq3 жыл бұрын
better than my teacher
@muhammadneanaa16114 жыл бұрын
Thanks!
@thetutorialdoctor Жыл бұрын
Excellent
@mattpecevich37494 жыл бұрын
What a great video, thank you!! Question: in your example of the stock market I think you used historical data to generate those bull-bull and bear-bear probabilities. Is it still a Markov process if the probabilities on the tree are derived from the past?
@DrTrefor4 жыл бұрын
Ah great point, and it takes a bit of further consideration of what do we REALLY mean about "the past". It is more about ignoring the recent past. So I'm not looking at least week or a month ago in my predictions for next week. But your are right that while I made up the numbers in this example, they would have come from looking at some historical average over, say, decades. A similar example might be weather. A markov model might be constructed that says given the weather today, what is the probability of the weather tomorrow, and it would be markov because it ignores what the weather was like yesterday or a week ago. However, the model might still build in historical climate data about what the weather is like generally.
@mattpecevich37494 жыл бұрын
Dr. Trefor Bazett thanks, that makes sense! Looking forward to the next one!
@sukanthenss9144 жыл бұрын
Hey @Dr. Trefor Bazett Is this the Basics for Reinforcement Learning !!
@CamEron-nj5qy2 жыл бұрын
A superhero who can't fly but has a cape 😂
@lazertroll702 Жыл бұрын
It's there to keep dry .. ? 🤨
@bonecircuit Жыл бұрын
what would be the differences to a finite state machine and the states position?
@kdewanik4 жыл бұрын
You are so amazing Dr.Trefor making all these heavy content accessible to everyone, I give my best wishes to the channel growth exponentially. 🎊😇 I am doing my best to promote this content to everyone !!
@DrTrefor4 жыл бұрын
Thanks for your help Dewanik, really appreciate it!
@jace37892 жыл бұрын
Did you do the Transition Matrix video from the 'coming soon' note ? Thanks
@DrTrefor2 жыл бұрын
Yup, should be in the discrete math playlist
@Tiredprincessss4 жыл бұрын
THANK YOU
@5haik_Muzammil6 ай бұрын
But for that example of stock market you have considered past data does it not make , it as an example of non-markov method?
@sambhavgupta4653 Жыл бұрын
So basically we can consider markov chains as studying dependent probabilities? Also, how is is bear and bull example markovian? As you mentioned, that using an old data set (past info.) is non markovian process.
@georgesalexandrebajk82233 жыл бұрын
Thank you Dr very well explained 👌 Do you have any videos about poison process and exponential distribution
@DrTrefor3 жыл бұрын
Thank you! Yes I do plan to do a stats series at some point, but not just yet sorry:)
@BlackCodeMath10 ай бұрын
Which came first, the Markov Chain or the DFA/NFA?
@tuongnguyen93914 жыл бұрын
So what kind of playlist would this Markov Chain belong to ?
@DrTrefor4 жыл бұрын
Right now it’s in my discrete math playlist, but anything with probability or stats could talk about this.
@ungoyboy20064 жыл бұрын
Thanks for video , it was mentioned Markov only based on “present” state however the transition probabilities themselves are based on historical data right? Just trying to get my head around that distinction.
@twishanuaichroy1938 Жыл бұрын
Best
@physicslover19504 жыл бұрын
Please make videos on vector calculus i.e. the calculus of vector fields. Please sir. There are no sources on KZbin about this topic. Sir we don't know about any android software that can help us plot vector fields.
@DrTrefor4 жыл бұрын
It's coming, starting in about 2 weeks!
@physicslover19504 жыл бұрын
@@DrTrefor Would you you recommend me a software on Android that can plot vector fields.
@DrTrefor4 жыл бұрын
I would try navigating to wolframalpha on browser first I think, but I’m sure there are others
@binshebah4 жыл бұрын
In the final step, why did you multiply the probabilities of each branch and not adding them ?
@mryup61003 жыл бұрын
I would like to know as well. I don't know the logic behind it.
@ayamohammed43552 жыл бұрын
A clear explanation, please, how can I contact you because I have some questions. Is there an email?
@jacobfertleman1980 Жыл бұрын
I desperately need to see a movie with the character he described: A superhero with an hour memory span😂
@ronaldmarcks1842 Жыл бұрын
This is counter-intuitive, the notion that experience has no value. Thanks.