Go to LEM.MA/LA for videos, exercises, and to ask us questions directly.
@wenweilin47947 жыл бұрын
The best linear algebra teacher on earth is back!!!!
@stearin19787 жыл бұрын
wenwei lin Don't discard the strength of Gilbert Strang!
@MathTheBeautiful7 жыл бұрын
On the contrary, Gilbert Strang is my hero (and teacher) and mention to this whenever I have a chance!
@scitwi91647 жыл бұрын
Gilbert Strang might be good at linear algebra, but he's not very good in teaching. You are much better in that. No stuttering, no chaotic jumping over different topics and different parts of the blackboard, everything is clear and in proper order :) All with good, visual, geometrical intuitions and clear explanations.
@TheRealJavahead5 жыл бұрын
@@MathTheBeautiful "But Grasshopper, someone must snatch the pebble," said Gilbert to Pavel. Agreed, Gilbert Strang is a legend. His OCW lectures were my introduction to linear algebra.
@grantkobe93 жыл бұрын
@@MathTheBeautiful Gilbert Strange is my No. 1 hero in algebra also . You are my No. 2 hero now ! Thanks for your teaching. Learn a lot from you.many thanks.:p
@theodoretourneux56623 жыл бұрын
this lecture is more engaging than anything I've seen before, it really does make everything sound beautiful! Thank you for brightening my day and bringing a smile to my face!
@MathTheBeautiful3 жыл бұрын
Thank you - deeply appreciated!
@raizan15263 ай бұрын
you're the best
@MathTheBeautiful3 ай бұрын
Thank you, it means a lot!
@gianlucacastro52814 жыл бұрын
Only by this intro I can be SURE this is going to be one of the best linear algebra material on youtube.
@MathTheBeautiful4 жыл бұрын
Thank you, it's very nice of you to say!
@miikavuorio91903 жыл бұрын
May I reccomend, 3blue1brown
@farrukhsaif1082 жыл бұрын
@@miikavuorio9190 They don't cover inner products
@marciofernandes70916 жыл бұрын
This teacher is something else. Thanks for posting this.
@damian.gamlath7 жыл бұрын
This is what is missing from most textbooks and even YT videos - the reason why - the intuition behind the math and calculations.
@anjanavabiswas883511 ай бұрын
Ok this is like the best lecture. He actually motivates his explanations. Even me with my 2 braincells can figure out what he means. When he gives the length of the polynomial example, it really helped me to understand why I can't directly measure length. The intuition was very valuable. Thank you.
@alexplastow9496 Жыл бұрын
This guy lectures with all the conviction and zeal of a campaign speech, except it's math, which is fun and not ideologically poluted
@MathTheBeautiful Жыл бұрын
^This guy makes really accurate comments
@jvmguy4 ай бұрын
I really like the way you teach this. I thought I knew linear algebra, but this takes things to another level.
@MathTheBeautiful4 ай бұрын
There's always another level!
@hedgeclipper4184 жыл бұрын
came here for a quick review of inner products and got this. I think I am happy with this outcome.
@andreypopov616610 ай бұрын
After reading my current textbook and didn't get a lot, was surfing youtube for an explanation why Inner product is needed and it seems that this is the vide i was looking for. I believe the worth trying resource for sure. Thanks!
@MathTheBeautiful9 ай бұрын
So glad you found it helpful!
@sanjinred4 жыл бұрын
Trully the best way to approach linear algebra of vector spaces. Not to teach how to solve it, but to actually give a deeper understanding of WHY we are doing it. I am a structural engineer and had to learn it the hard way, on my own because in college we only learned how to do it. :) Great vid!
@MathTheBeautiful4 жыл бұрын
Thanks - much appreciated!
@AyoubChouak6 жыл бұрын
Absolutely brilliant, so brilliant I went so far as to buy your book "Hello Again, Linear Algebra". Thanks for these wonderful videos and I wish you all the best for Lemma.
@wuzark5 жыл бұрын
WOW, this lecture is really good. Thank you.
@TheGodSaw7 жыл бұрын
Yes TWO new series. I love your videos!
@irtizahasan35377 жыл бұрын
it's so nice of you made these videos. thanks
@andrerossa85535 жыл бұрын
Thank you so much for such a great enthusiasm to teach
@boybawn672 жыл бұрын
Please consider doing a video on weighted least squares to show how the projection is oblique under the standard inner product, but orthogonal under the 'right' inner product.
@evertonsantosdeandradejuni37872 жыл бұрын
that'd be very intresting
@jgarbs64684 жыл бұрын
David Wallace is a pretty great teacher!
@MathTheBeautiful3 жыл бұрын
and accountant
@tcreatesllc3 жыл бұрын
A very good orator. Perfect
@AlphaHatsuseno5 жыл бұрын
Holy moly this is amazing quality
@sollinw Жыл бұрын
not only did I understand what I didnt understand, but also understood it thx
@زينالعابدينماجد-خ1خ7 жыл бұрын
I love how you teaching thanks for this amazing videos
@anuragkadam79352 жыл бұрын
This video was awesome, its like watching a suspense movie
@MathTheBeautiful6 ай бұрын
That's how I see it too!
@rohamjarah70923 жыл бұрын
LinAlg day 1: Solve for x and y. LinAlg day 30: How long is turquoise?
@earlofyarg3 жыл бұрын
incredible teaching.
@komahanb3 жыл бұрын
You are right, we have always been trained to assume "inner product" as just "length". Inner products, as you mention are far more fundamental than attributes such as lengths, angles (for geometric vectors). The nature, perhaps, must be using inner products to compare two objects (A, B) with respect to a chosen set of attributes. In the case of geometric vectors, objects A and B are vectors, and an attribute that we "chose" to do the comparison is length. If we compare two surfaces A and B, the attribute perhaps can be chosen as area. If the surfaces are identical but differ only in roughness, then choosing just area wouldn't suffice to tell whether A and B are identical or not. Then we have to compare both area and roughness. If two surfaces A and B have the same area and also roughness, but differ only in color, then we need to include color as an attribute for comparison.
@MathTheBeautiful3 жыл бұрын
Hi Komahan, thank you for a very interesting comment. However, I'm quite confident that nature doesn't think about inner products. -Pavel
@voidisyinyangvoidisyinyang885 Жыл бұрын
check out Alain Connes on noncommutative spectral that is nonlocal inner products. thanks
@jaimelima24202 жыл бұрын
Where are just watching the birth of the inner product. And his mom is called Norm. Thanks for putting this together.
@nielsota633 жыл бұрын
Hi! I love this video series! I was wondering if you have any exercises to go with the videos?
@MathTheBeautiful3 жыл бұрын
Yes. lem.ma/LA
@umbraemilitos5 жыл бұрын
Inner product spaces are just a special case of tensor spaces.
@shivanisingla11406 жыл бұрын
You are an incredible teacher🤗
@defaultuser17605 жыл бұрын
Amazing explanation. Thank you.
@worldmath88487 жыл бұрын
thank you so much sir for adding such a nice video ... Keep it up ....
@kushalv82685 жыл бұрын
Thank you sir for amazing lecture
@Hythloday717 жыл бұрын
Is this the beginning of a new higher course in Linear Algebra ? Oh goody !
@omkark75977 жыл бұрын
Prof, Video is great. please publish videos on dual spaces.
@Matchless_gift6 жыл бұрын
This 14min lecture can clear purpose of doing l.a
@avtaras4 жыл бұрын
Looking forward to this :)
@MathTheBeautiful4 жыл бұрын
Do it on Lemma! lem.ma/LA (and lem.ma/LA3 to jump to inner products).
@TheGodSaw7 жыл бұрын
Hey, you said you would talk more about the SVD and its application. Will the be in the context of Inner products?
@MathTheBeautiful7 жыл бұрын
Yes
@alexshei50617 жыл бұрын
Thank you so much for these amazing videos!!!!
@MaxPicAxe2 жыл бұрын
Very good video
@solarestone2 жыл бұрын
Thank you
@MathTheBeautiful2 жыл бұрын
Glad you enjoyed it!
@levtunik9976 жыл бұрын
great editing!
@AliVeli-gr4fb7 жыл бұрын
i am excited
@mrcaljoe14 жыл бұрын
brilliant video. wish he was my lecturer
@MathTheBeautiful4 жыл бұрын
I *am* your teacher. Just check out lem.ma/LA
@ratusca4 жыл бұрын
@@MathTheBeautiful Thank you so much, my concepts are so clear after watching this video. Online classes are useless :(
@lateefahmadwanilaw89483 жыл бұрын
Thank you sir
@doodelay4 жыл бұрын
Damn this guy is good
@MathTheBeautiful4 жыл бұрын
Correct
@Euquila3 жыл бұрын
2:18 that lambda is more like a giraffe no?
@MathTheBeautiful3 жыл бұрын
Yes, yes it is
@shawheennaderi89705 жыл бұрын
For some reason, his teaching style reminds me of Richard Feynman's
@VNischal5 жыл бұрын
I Totally Agree..... :)
@jsnam81394 жыл бұрын
Might be because of his accent.
@alexbenjamin58237 жыл бұрын
Would factorizations fall under II? (eigenvalue, LU etc.)
@MathTheBeautiful7 жыл бұрын
Depends on the factorization! I: LU, LDU II: XΛX⁻¹ (Eigenvalue) III: QR, LDLᵀ, LLᵀ, Polar, XΛXᵀ (Eigenvalue for symmetric), UΣVᵀ (SVD)
@RahulYadav-nb2zt6 жыл бұрын
very nice lecture
@RahulYadav-nb2zt6 жыл бұрын
very nice lecture
@_computerra4 жыл бұрын
I wish I was in your class.
@MathTheBeautiful3 жыл бұрын
Thank you for the compliment! Check out lem.ma/LA and you'll feel like you in my class.
@phenax1144 Жыл бұрын
love it😀😀😀
@ashwinsingh13257 жыл бұрын
Solid lecture
@adrianott52487 жыл бұрын
What makes it so obvious that length is the right measure of how accurate the (semi) solution is in the case of your rectangular matrix multiplication? Why not minimize the sum of the errors? I know its a more convenient calculation and it uses the power of matrices, but is that the only reason?
@MathTheBeautiful7 жыл бұрын
You're exactly right. There isn't one best preset measure to be minimized. The choice of measure should depend on the particular problem you're trying to solve. Whatever measure you choose would be called "length". Some lengths come from inner products, some (like the sum of |errors|) don't. The ones that come form inner products have some advantages. Other measures, like the one you're suggesting, have other advantages.
@adrianott52487 жыл бұрын
Thanks you! Looking forward to more videos from this course!
@spearius90592 жыл бұрын
I really want to be in your class.
@MathTheBeautiful6 ай бұрын
Please!
@stanleyezeogu98163 жыл бұрын
Wow!
@MathTheBeautiful3 жыл бұрын
Glad you liked it!
@JohnBerry-q1h10 ай бұрын
. . . . . . . ** . . . . . . . . ** What is☝☝☝THIS or ☝☝☝ THIS?? I often see this notation in mathematical writings. To me, they both look like inner products, but with THREE inputs. How do you go about evaluating these? What is the proper interpretation of this notation?
@MathTheBeautiful10 ай бұрын
See kzbin.info/www/bejne/hqTFYo2rrdRqndUsi=3E1stR16in-S0gyD&t=250 for one possible analogy. Another analogy is that it's the inner product of the vectors 𝜓 and (𝚽𝜙)
@johnnymurf6 жыл бұрын
Innah prawduct
@achillesarmstrong96397 жыл бұрын
good video
@anuragkadam79352 жыл бұрын
You sound so much like Anthony Jeselnik!!!
@MathTheBeautiful2 жыл бұрын
I'm going for Mitch Hedberg actually.
@111abdurrahman5 жыл бұрын
Great actor. You need to join hollywood
@MathTheBeautiful5 жыл бұрын
Thank you! Please tell me you pronounce your last name "Riemann"
@voidisyinyangvoidisyinyang885 Жыл бұрын
"orthogonal projection" is two words - just sayin' haha
@goobersteinmcfancyful6 ай бұрын
Everyone is shy, so I'll just say it... much better than Gilbert Strang.
@MathTheBeautiful6 ай бұрын
I'm not sure I agree, but I certainly appreciate the complement!