Introduction to graph neural networks (made easy!)

  Рет қаралды 33,443

Jacob Heglund

Jacob Heglund

Күн бұрын

Пікірлер: 34
@bnjmn7779
@bnjmn7779 3 жыл бұрын
Hope there will be more videos about GNNs, would love to see a variety of real problems being represented by Graphs and solved using GNNs!
@prachi07kgp
@prachi07kgp Жыл бұрын
Very nice video with such easily understandable explanation of such complex concepts, thank you. I don't know why you stopped making videos, you are good at them, I watched all four of your videos
@mikeCavalle
@mikeCavalle 3 жыл бұрын
my first impression is "what a nice background ambiance. thanks for the topic and level.
@ScienceMasterHK
@ScienceMasterHK 2 ай бұрын
Incredible explanation! You made it simple to the point.
@newbie8051
@newbie8051 Жыл бұрын
Amazing explanation, was reading about GNN's for an intern assignment Thanks !
@Lily-wp5do
@Lily-wp5do Жыл бұрын
Simplest explanations so far
@draziraphale
@draziraphale 7 ай бұрын
Thanks for this, I'm using this to help a student with a GNN journal publication.
@jerryyang7011
@jerryyang7011 6 ай бұрын
Dots connected - great work.
@Septumsempra8818
@Septumsempra8818 2 жыл бұрын
WE WANT MORE!!! 1yr is too long a wait
@ShikhaMallick
@ShikhaMallick 3 жыл бұрын
Thanks for the cool explanation! Subscribed👍🏻
@jackkensik7002
@jackkensik7002 3 жыл бұрын
Great video, well made👍
@TheVishnu3333
@TheVishnu3333 3 жыл бұрын
Thanks for putting the effort into this well made video! Was very helpful
@MahimDashoraHackR
@MahimDashoraHackR 2 жыл бұрын
Wonderful video jacob , Please also make a video on implementing GNNS ,GATs on Pytorch /TensorFlow and explain how math works in code .It would be really helpful
@ananthakrishnank3208
@ananthakrishnank3208 6 ай бұрын
Nice. Your website is cool as well!
@thousandTabs
@thousandTabs 2 жыл бұрын
Awesome video and explanations! So many good resources to check out, thank you for making this! Looking forward to more
@pennyfarthingchapel
@pennyfarthingchapel 2 жыл бұрын
Surely k is not the number of hops? From the paper it says "We use superscripts to distinguish the embeddings and functions at different iterations of message passing."
@sunaxes
@sunaxes 8 ай бұрын
Sorry to me GNN are “just” being selective about how to connect one layer to the next through the adjacency matrix. We simplify the basic dense layer system which then enables fast convergence of the network… right? Conv nets do the same. They establish a neighborhood to each input. So if previous approaches do not leverage this inherent structure in the data, they cant do as well. Let me know if I m missing something.
@amanrv
@amanrv 3 жыл бұрын
Pretty great! I would love to see some example applications of these models in a future video. Subscribed!
@saurabhmahindre
@saurabhmahindre 3 жыл бұрын
Amazing overview!
@Hanyao8
@Hanyao8 2 жыл бұрын
Brilliant, very helpful!
@milandoshi7640
@milandoshi7640 3 жыл бұрын
Thanks. Can you make a practical video on how to generate a GNN.
@xphn1985
@xphn1985 3 жыл бұрын
Great content!! Thank you!
@christiansinger2497
@christiansinger2497 3 жыл бұрын
Great content!! Greetings from Germany
@thecutestcat897
@thecutestcat897 Жыл бұрын
thanks a lot!
@vijayrameshkumar8522
@vijayrameshkumar8522 3 жыл бұрын
Great content! Hope to see more videos.. Can you make videos with real world examples.. with code..
@cybervigilante
@cybervigilante 3 жыл бұрын
So I clicked on the link to the first video on graph neural networks and it took me right back to the Second video. Bad graph 😃
@ThankYouESM
@ThankYouESM 3 жыл бұрын
How is GNN better than the BoW algorithm?
@mrigankanath7337
@mrigankanath7337 3 жыл бұрын
at 3:41 shouldn't it be "l" instead of "k"? I mean it should be a layer, not hop (the previous layer will affect the next layer)
@jacobheglund4245
@jacobheglund4245 3 жыл бұрын
I agree, the embedding computed by the previous layer would be used to compute the embedding of the next layer. I use hops and layers interchangeably here because the embedding for node i (h^1_i) computed by the first layer of the GNN will only consider information from the 1st hop neighborhood of node i. Then in the 2nd layer, the GNN will again propagate information from the 1st hop neighborhood of node i, but now the embeddings of nodes in the 1st hop neighborhood contain information about nodes in the 2nd hop neighborhood.
@mrigankanath7337
@mrigankanath7337 3 жыл бұрын
@@jacobheglund4245 Yes I get it what you arr trying to convey . Thanks,and really cool videos
@arshsharma8627
@arshsharma8627 5 ай бұрын
i bet its a great video but its too technical, can someone recommend something more basic
@TheGroundskeeper
@TheGroundskeeper 5 ай бұрын
This is not the area to begin machine learning
@WahranRai
@WahranRai 2 жыл бұрын
May be reduce the speed of your speech !
@johnspivack6520
@johnspivack6520 Жыл бұрын
Sorry, this is a bad video. I gave a thumbs down. It's phony, basically because you don't discuss the key concepts at all. You show some fancy formulas but also never get to a good conceptual explanation. Please do better or don't take our time. No offense.
Why would you use graphs for machine learning data?
10:48
Jacob Heglund
Рет қаралды 10 М.
Deep learning with dynamic graph neural networks
15:08
Jacob Heglund
Рет қаралды 13 М.
Симбу закрыли дома?! 🔒 #симба #симбочка #арти
00:41
Симбочка Пимпочка
Рет қаралды 4,7 МЛН
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 92 МЛН
Graph Neural Networks - a perspective from the ground up
14:28
Understanding Graph Attention Networks
15:00
DeepFindr
Рет қаралды 87 М.
Simple Message Passing on Graphs
10:51
WelcomeAIOverlords
Рет қаралды 32 М.
How Graph Neural Networks Are Transforming Industries
12:03
AssemblyAI
Рет қаралды 12 М.
The basics of spatio-temporal graph neural networks
13:09
Jacob Heglund
Рет қаралды 26 М.
The moment we stopped understanding AI [AlexNet]
17:38
Welch Labs
Рет қаралды 1,3 МЛН
Intro to graph neural networks (ML Tech Talks)
51:06
TensorFlow
Рет қаралды 180 М.
Graph Attention Networks (GAT) in 5 minutes
5:10
WelcomeAIOverlords
Рет қаралды 43 М.
Graph Convolutional Networks (GCN): From CNN point of view
13:08
Soroush Mehraban
Рет қаралды 6 М.
Симбу закрыли дома?! 🔒 #симба #симбочка #арти
00:41
Симбочка Пимпочка
Рет қаралды 4,7 МЛН