this is the best LDA video I have seen. thank you so much.
@saketdeshmukh68813 жыл бұрын
I wish I had found this before my masters. intuitive with right amount of mathematical rigor.
@jiajieli51383 жыл бұрын
Highly recommended Machine Learning Instruction!
@AD-ox4ng Жыл бұрын
This is my guess for the number of parameters (in the covariance matrix alone) at 38:16: Full - p^2 (There are p*p distinct elements) Diagonal - p (There are only p distinct elements along diagonal, all else is 0) Spehrical - 1 (Same as diagonal but equal variance in all dimensions, so only one number to compute) If the model is separate, multiply the number above by 2, otherwise 1. Add 2p to account for the mean vectors as well. (There are p distinct means to calculate for each of the two classes)
@YuchengLin2 жыл бұрын
So wonderfully presented! Whenever I started to feel there was much math, some cute drawings appeared to give me simple and visceral intuition.
@woodworkingaspirations17202 жыл бұрын
This solved my problem. Thank you sir. Needed a summarized view of the math. Perfect.
@TheCrmagic3 жыл бұрын
Sir, You are a great teacher.
@IamMoreno2 жыл бұрын
simply beautifully explained, sir you have all my gratitude
@micahdelaurentis65513 жыл бұрын
These have been excellent videos so far
@severian6879 Жыл бұрын
Excellent explaination! Thank u very much!
@xiaochelsey8802 жыл бұрын
Great video. Thank you so much for showing all the math!
@indigod33233 жыл бұрын
Very great teacher, I wish I could study in Tubingen
@vincentole3 жыл бұрын
Great videos! Thank you for this.
@nauraizsubhan014 жыл бұрын
Sir can you please tell Does this course offers any course related to robotics and autonomous systems, during the program.
@calcifer77763 жыл бұрын
this is gold, thank you
@Jeremy-zs3nn3 жыл бұрын
Thanks for posting - very helpful video. I did get a bit confused with some of the notation. Looking at the slide titled estimating gaussian parameters (25:49) - the covariance matrix we're estimating is indexing over Ck which is the subset of the design matrix for which Y=k? are X and mu_k both matrixes or is mu_k a vector?
3 жыл бұрын
Thanks. Let me see... x_i is a vector (sample number i). mu_k is a vector (average over all samples belonging to class k, so with Y=k). Sigma_k is a matrix (covariance matrix over all samples belonging to class k). I usually use lowercase bold for vectors and uppercase bold for matrices.
@Jeremy-zs3nn3 жыл бұрын
@ great, thank you for the quick reply!
@CootiePruitt3 жыл бұрын
👍 Great video - thank you!
@hfz.arslan3 жыл бұрын
Sir can you please share the slides or notes thanks