Introduction to Topology: Made Easy

  Рет қаралды 147,172

Jack Li

Jack Li

Күн бұрын

Пікірлер: 119
@ngm_4092
@ngm_4092 5 жыл бұрын
you made me understand topology in 22 seconds. I think I heard the actual click in my mind
@HeyItsKora
@HeyItsKora 3 жыл бұрын
27 dislikes are from flat earthers, because you casually proved the shape of the globe just using topology 😂
@zapazap
@zapazap 2 жыл бұрын
That the earth is a globe us an unproved lemma. Work harder.
@TD-iy8us
@TD-iy8us Жыл бұрын
​@@zapazap what??? The earth being a globe is proven
@zapazap
@zapazap Жыл бұрын
@@TD-iy8us The commenter presented the claim without proof.
@guidinglight1lul_SSstudios
@guidinglight1lul_SSstudios Жыл бұрын
@@zapazapGreenland has a special property, (how?) go to space oh wait you cant
@zapazap
@zapazap Жыл бұрын
@@guidinglight1lul_SSstudios If you know that can't go to space, then why did you advise me to go there? Are you engaging in good faith sir?
@dennnisjoshy2369
@dennnisjoshy2369 4 жыл бұрын
This is the first video of topology I ever watched. Thank you for sparking my interest.
@farnaznouraei9000
@farnaznouraei9000 4 жыл бұрын
Finally! A video with simple explanation on the concept of genus!
@martyguild
@martyguild 4 жыл бұрын
they... didn't even say the word genus
@kuhinde
@kuhinde 3 жыл бұрын
@@martyguild LMAOO
@ibrahimabdullah9277
@ibrahimabdullah9277 Ай бұрын
Delightfully simple and elegant presentation, TY
@AbuSayed-er9vs
@AbuSayed-er9vs 6 жыл бұрын
Awesome video!!! Even I can't tell in words how helpful it is for me.Please make videos about topology of glueing,cutting etc.
@sudeshnasamanta7133
@sudeshnasamanta7133 2 жыл бұрын
Mind-blowing! Quality over quantity (5:00 min)!
@mathboy8188
@mathboy8188 Жыл бұрын
The precise claim is that every *_closed_* surface (compact connected no-boundary 2-manifold) is determined by its Euler characteristic *_and_* whether it's orientable or not.
@sem5776
@sem5776 7 жыл бұрын
This is interesting, it makes me wanna learn topology
@matthewbain9359
@matthewbain9359 7 жыл бұрын
Wonderfully explained. Thanks a lot!
@MrFischvogel
@MrFischvogel 3 жыл бұрын
Excellent visual demonstration of useful applications! Make more, more, more !! =)
@zapazap
@zapazap 2 жыл бұрын
Topology does not apply only to manifolds in R^n. Do these 'stretching' analogies apply to non T1 spaces? I ask because I am suspicious of 'rubber sheet geometry' being used as a description of topology per se.
@matheusreidopedaco
@matheusreidopedaco 2 жыл бұрын
My college needs you as a teacher!
@levimungai1846
@levimungai1846 Жыл бұрын
This explanation provides very good insight. A very good video.
@xenmaster0
@xenmaster0 4 жыл бұрын
This is a fabulous video. Incredibly clear and helpful. Bravo!
@chadliampearcy
@chadliampearcy 6 жыл бұрын
Study Group theory and real/complex analysis before touching topology. The concepts in algebra and analysis naturally lead to topology
@zapazap
@zapazap 2 жыл бұрын
Group theory is important only to algebraic topology, not general topology. And the latter does not even require real analysis. (Though an understanding of metric spaces can certainly motivate.)
@benjaminbuzali9254
@benjaminbuzali9254 5 ай бұрын
And logical-mathematical psychoanalysis. started from lacan analytic discourse. Thanks for the video!!!!!!
@devanteaspon6450
@devanteaspon6450 8 жыл бұрын
Hey nice video! I really enjoyed your intuitive explanation. You made it real interesting and good luck bro!!
@dhruvvhatkar6037
@dhruvvhatkar6037 3 жыл бұрын
clear and crisp intro to the concept.....
@huypham0081
@huypham0081 3 ай бұрын
thanks for your simple explaination
@joyjeetdas6821
@joyjeetdas6821 2 жыл бұрын
easiest explanation found till now great
@petelok9969
@petelok9969 5 жыл бұрын
Hi Jack great video. Any chance of and introduction to manifolds? Peter
@Mrmoe198
@Mrmoe198 Ай бұрын
Euler is oiler? X is keye/kie? Thanks!
@joshuaharper7537
@joshuaharper7537 3 жыл бұрын
This video has saved my masters
@rajdeepghosh7368
@rajdeepghosh7368 4 жыл бұрын
Hey small issue with the video... I think. Continuous deformation l is not a homeomorphism.. It's called a homotopy. A homeomorphism is just a bicontinuous bijection and in general is a much much less demanding map. For example, a trefoil knot and a circle are homeomorphic, but there is no continuous deformation possible between the two. Cheers!
@zapazap
@zapazap 2 жыл бұрын
Is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1?
@joyfuljaj
@joyfuljaj 3 жыл бұрын
This is late, but I'm confused about the earth "obviously" being simply connected. If we were coming from the perspective of having never seen space images of the earth, how would we figure out that all loops can be adjusted to a point? Sorry if this is stupid, but I'm stuck on that. I've been listening to math lectures while on a road trip today, so my brain is a bit tired. I came to this video to get an explanation of how a coffee cup is a torus (I kind of get that).
@-minushyphen1two379
@-minushyphen1two379 Жыл бұрын
Get a really long string with its ends joined, then move it until it is not taut, and continue in that direction /s In seriousness, you could also use triangulation to find the Euler characteristic of the Earth, which itself has practical applications in cartography, so there’s an additional incentive to do it
@henrytan5707
@henrytan5707 2 жыл бұрын
Wah! I think I got the idea, thanks a lot, much better than reading a book!
@jorgeriveramx
@jorgeriveramx 6 жыл бұрын
Very insteresting subject. Excellent explanation. Thank you so much!
@charumathib9662
@charumathib9662 6 жыл бұрын
super .....create more videos like this....with a picturized explanation .....one can easily understand .....next part pls😊 😊
@user-kl5gm8nm6r
@user-kl5gm8nm6r 5 жыл бұрын
I am PHD in Topology, and this is the simplest explanation for laymen
@zapazap
@zapazap 2 жыл бұрын
Sir: on your opinion, is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1? I am suspicious of the beauty of general topology being shortchanged.
@supposexy
@supposexy 3 жыл бұрын
Outstanding Dear!!!!!!!!!!!!!!!!1 waow!!!!
@antoniofirenze
@antoniofirenze 2 жыл бұрын
Jack Li's videos: Music, music, music, music.. TOPOLOGY!!
@brandonzang8393
@brandonzang8393 8 жыл бұрын
Thanks for the awesome video! Now when my friends talk intuitively about topology, I know what to say.
@simpytarika7836
@simpytarika7836 6 жыл бұрын
Awsm..am speechless ..cant use wordz for prase on your presentation on topology
@Onism__
@Onism__ Жыл бұрын
'every surface is homeomorphic to either a sphere, torus, double torus etc..' What about an annulus, double annulus, etc? Toruses contain a 2D hole (the space in the middle) but annuli do not (sorry if incorrect terminology). Surely they are not topologically equivalent? (I'm pretty new to topology but if anyone could explain I'd be really grateful)
@orcodriloorquial7052
@orcodriloorquial7052 7 жыл бұрын
each bridge, window, dor tunnel, .... i am not quite sure what the euler caracteristic of earth is....
@alexislopez1785
@alexislopez1785 7 жыл бұрын
Orcodrilo Orquial p
@theprobablyuncommonhandle
@theprobablyuncommonhandle 6 ай бұрын
Hey, can you turn a torus into a kline bottle? Both euler characteristics are 0, but I believe you can’t.
@oskarhenriksson
@oskarhenriksson 5 жыл бұрын
How do you know that Earth is simply connected?
@videostar75
@videostar75 5 жыл бұрын
He explains why at 4:30. You can shrink any loop to a point without cutting or glueing
@maxpercer7119
@maxpercer7119 4 жыл бұрын
@@videostar75 Yes but that uses 'external information from space', and he said we can demonstrate Earth is simply connected without any external information. Also is it obvious that any loop on earth can be shrunken to a point? Have we looked at every possible loop on the surface of earth? maybe there is some loop we have not yet come across that can't be shrunken to a point (which would given evidence of a toroidal surface).
@zapazap
@zapazap 2 жыл бұрын
​@@videostar75 That holds for a sphere. To say it holds for the Earth requires more work.
@diegozurita9073
@diegozurita9073 5 жыл бұрын
Great video!
@BrainyLifestyle
@BrainyLifestyle 2 ай бұрын
Made me interested. 🎉
@eleazaralmazan4089
@eleazaralmazan4089 5 жыл бұрын
You have a typo at 1:19. It should be vertices. Other than that, thank you for the introduction.
@Rachel-rs7jn
@Rachel-rs7jn 5 жыл бұрын
"Separable" was spelled wrong too. ;)
@NonTwinBrothers
@NonTwinBrothers 3 жыл бұрын
This is interesting, it makes me wanna learn clarinet
@balazshorvath5342
@balazshorvath5342 Жыл бұрын
Two surfaces having the same euler characteristic does not garantee that they are homeomorphic. It is a required condition but it is not sufficient. In general the video is only about orientable surfaces, for which this is true, but there are also non orientable surfaces.
@DedhertJr
@DedhertJr 4 жыл бұрын
Why this video is recommended while I'm trying to studying the topic of math?
@zaidsserubogo261
@zaidsserubogo261 5 жыл бұрын
I like the concept of deformation in telling a lot about what the future is preparing for us to discover
@xyzct
@xyzct 4 жыл бұрын
There's a lot of homeomorphism in San Francisco.
@zapazap
@zapazap 2 жыл бұрын
Are you thinking of homorphisms?
@huangweicheng4215
@huangweicheng4215 3 жыл бұрын
very interesting and straight forward, however I guess the word "verticies" is a wrong spelling
@fritzschnitzmueller3768
@fritzschnitzmueller3768 3 жыл бұрын
I will now use this knowledge to debate flat-earthers. Earth must be a sphere!
@gmaximuspatt4122
@gmaximuspatt4122 5 жыл бұрын
@ Jack Li ...what program did you use to create your presentation? Thanks
@jeremytalbot-paquet8679
@jeremytalbot-paquet8679 4 жыл бұрын
Every surface is homeomorphic to a ball, a donut, an eight or a fidget spinner. Got it
@HoneycombTheywontletmeputjusto
@HoneycombTheywontletmeputjusto 4 жыл бұрын
The human body is homeomorphic to a 7-holed donut unless you decide to pierce it
@zapazap
@zapazap 2 жыл бұрын
This will not get you to the surfaces surrounding knots.
@mattraymond1497
@mattraymond1497 4 жыл бұрын
that was a homotopy and the iff statement with euler characteristic doesn’t hold
@zhanna7307
@zhanna7307 Жыл бұрын
Still donut understand
@izzy-jd7ft
@izzy-jd7ft 5 жыл бұрын
Aye yo my g big ups man
@renunciant
@renunciant 6 жыл бұрын
Its not important to worry about why maths is important. One can assume it isn't and prove it is always.
@joaovaleriodesouzaneto8038
@joaovaleriodesouzaneto8038 Жыл бұрын
very good!
@kingdomofknowledge5960
@kingdomofknowledge5960 5 жыл бұрын
Excellent !
@B888-h2o
@B888-h2o 4 жыл бұрын
Great video - I understand it
@HausdorffLover
@HausdorffLover 4 жыл бұрын
Amazing👌🏻
@user-te4jj2nq6q
@user-te4jj2nq6q 3 жыл бұрын
Thank you very much for sharing your knowledge freely. In my religion this has a big reward for you from Allah. Thank you again.
@kuasocto3528
@kuasocto3528 5 жыл бұрын
Very cool video, thanks
@mimio8
@mimio8 3 жыл бұрын
great video!! thanks a lot
@Pure_Imagination_728
@Pure_Imagination_728 2 жыл бұрын
I see some crossovers to Calc 3.
@takyc7883
@takyc7883 4 жыл бұрын
PLEASE PART TWO
@PeteRoyJackson
@PeteRoyJackson 4 жыл бұрын
Great tutorial... there’s “a rat” in separate -> separable. )
@anverHisham
@anverHisham 6 жыл бұрын
Very nice video. Thanks a lot :-)
@ambernile123
@ambernile123 Жыл бұрын
"Next time you're out with your topologists friends..." 😂
@ParthSThakar
@ParthSThakar 4 жыл бұрын
Splendid
@j.megatron
@j.megatron 6 жыл бұрын
Awesome
@prod.winterxphool6227
@prod.winterxphool6227 2 жыл бұрын
bro thats so facts
@lintujoshua
@lintujoshua 5 жыл бұрын
No words!!!
@brambeer5591
@brambeer5591 4 жыл бұрын
This is content.
@pablogil168
@pablogil168 Жыл бұрын
This is just wrong. You can deform a ring in a circle without cutting nor terring yet they are not homeomorphic. The ring is arch-connected when removing two points and the circle is not.
@pablogil168
@pablogil168 Жыл бұрын
Also euler's charactistic is a topological invariant, this means that if two spaces are homeomorphic to eachother they will have the same euler's characteristic but the reciprocal statement doesn't hold. It is not an if and only if
@pablogil168
@pablogil168 Жыл бұрын
And you missed the projective planes when talking about clasification, this just holds for orientable ones
@pablogil168
@pablogil168 Жыл бұрын
Affine planes aee also simply connected, you missed the compact part
@TheRealNickG
@TheRealNickG 2 жыл бұрын
That is a bad definition of homeomorphism. What matters is that there is a one to one function that assigns one set to another set. Euler characteristic is only one of an infinite number of choices of such a function.
@asparkdeity8717
@asparkdeity8717 2 жыл бұрын
Two topological spaces X and Y are homeomorphic if there exists a bijection f : X -> Y such that both f and f^-1 are continuous, I think is the best way of defining it
@zapazap
@zapazap 2 жыл бұрын
​@@asparkdeity8717 All knots are homomorphic. Are they all homeorphic?
@Idk-hg8jr
@Idk-hg8jr 3 жыл бұрын
Laughs in blender
@handledav
@handledav Жыл бұрын
top
@handledav
@handledav Жыл бұрын
so
@gzpo
@gzpo 2 жыл бұрын
It's pronounced, You-ler.
@CrucialFlowResearch
@CrucialFlowResearch 5 ай бұрын
No
@FreeFieldSolutions
@FreeFieldSolutions Жыл бұрын
Does this guy have a cold or allergies or something??
@evenaicantfigurethisout
@evenaicantfigurethisout 4 жыл бұрын
dude. this is money. have a donut.
@NivarnaMonk
@NivarnaMonk 2 жыл бұрын
( mathematical term for a donut 😂)
@walter2308
@walter2308 Жыл бұрын
cant stop pretending😭
This open problem taught me what topology is
27:26
3Blue1Brown
Рет қаралды 1 МЛН
Intro to Topology - Turning a Mug Into a Doughnut
8:37
Drew's Campfire
Рет қаралды 96 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Good Topology: What is it, and Why Does it Matter?
11:20
DECODED
Рет қаралды 47 М.
The Topological Problem with Voting
10:48
Physics for the Birds
Рет қаралды 311 М.
Topology Riddles | Infinite Series
13:34
PBS Infinite Series
Рет қаралды 171 М.
Who cares about topology?   (Old version)
18:16
3Blue1Brown
Рет қаралды 3,2 МЛН
Visualizing 4D Pt.1
22:56
HyperCubist Math
Рет қаралды 1,3 МЛН
What is a Topological Space?
9:41
Infinite Dimensions
Рет қаралды 55 М.
Topology is Impossible Without These 7 Things
13:19
DiBeos
Рет қаралды 23 М.
Learn Topology in 5 minutes (joke video)
5:02
eigenchris
Рет қаралды 499 М.
A Sensible Introduction to Category Theory
26:20
Oliver Lugg
Рет қаралды 456 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41