you made me understand topology in 22 seconds. I think I heard the actual click in my mind
@HeyItsKora3 жыл бұрын
27 dislikes are from flat earthers, because you casually proved the shape of the globe just using topology 😂
@zapazap2 жыл бұрын
That the earth is a globe us an unproved lemma. Work harder.
@TD-iy8us Жыл бұрын
@@zapazap what??? The earth being a globe is proven
@zapazap Жыл бұрын
@@TD-iy8us The commenter presented the claim without proof.
@guidinglight1lul Жыл бұрын
@@zapazapGreenland has a special property, (how?) go to space oh wait you cant
@zapazap Жыл бұрын
@@guidinglight1lul If you know that can't go to space, then why did you advise me to go there? Are you engaging in good faith sir?
@mathboy8188 Жыл бұрын
The precise claim is that every *_closed_* surface (compact connected no-boundary 2-manifold) is determined by its Euler characteristic *_and_* whether it's orientable or not.
@dennnisjoshy23694 жыл бұрын
This is the first video of topology I ever watched. Thank you for sparking my interest.
@AbuSayed-er9vs6 жыл бұрын
Awesome video!!! Even I can't tell in words how helpful it is for me.Please make videos about topology of glueing,cutting etc.
@sem57766 жыл бұрын
This is interesting, it makes me wanna learn topology
@farnaznouraei90004 жыл бұрын
Finally! A video with simple explanation on the concept of genus!
@martyguild4 жыл бұрын
they... didn't even say the word genus
@kuhinde2 жыл бұрын
@@martyguild LMAOO
@matthewbain93597 жыл бұрын
Wonderfully explained. Thanks a lot!
@benjaminbuzali92543 ай бұрын
And logical-mathematical psychoanalysis. started from lacan analytic discourse. Thanks for the video!!!!!!
@sudeshnasamanta71332 жыл бұрын
Mind-blowing! Quality over quantity (5:00 min)!
@levimungai1846 Жыл бұрын
This explanation provides very good insight. A very good video.
@matheusreidopedaco Жыл бұрын
My college needs you as a teacher!
@dhruvvhatkar60373 жыл бұрын
clear and crisp intro to the concept.....
@xenmaster03 жыл бұрын
This is a fabulous video. Incredibly clear and helpful. Bravo!
@MrFischvogel3 жыл бұрын
Excellent visual demonstration of useful applications! Make more, more, more !! =)
@antoniofirenze2 жыл бұрын
Jack Li's videos: Music, music, music, music.. TOPOLOGY!!
@chadliampearcy5 жыл бұрын
Study Group theory and real/complex analysis before touching topology. The concepts in algebra and analysis naturally lead to topology
@zapazap2 жыл бұрын
Group theory is important only to algebraic topology, not general topology. And the latter does not even require real analysis. (Though an understanding of metric spaces can certainly motivate.)
@user-kl5gm8nm6r4 жыл бұрын
I am PHD in Topology, and this is the simplest explanation for laymen
@zapazap2 жыл бұрын
Sir: on your opinion, is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1? I am suspicious of the beauty of general topology being shortchanged.
@joyjeetdas68212 жыл бұрын
easiest explanation found till now great
@petelok99695 жыл бұрын
Hi Jack great video. Any chance of and introduction to manifolds? Peter
@joshuaharper75373 жыл бұрын
This video has saved my masters
@zapazap2 жыл бұрын
Topology does not apply only to manifolds in R^n. Do these 'stretching' analogies apply to non T1 spaces? I ask because I am suspicious of 'rubber sheet geometry' being used as a description of topology per se.
@jorgeriveramx6 жыл бұрын
Very insteresting subject. Excellent explanation. Thank you so much!
@huypham0081Ай бұрын
thanks for your simple explaination
@NonTwinBrothers3 жыл бұрын
This is interesting, it makes me wanna learn clarinet
@henrytan57072 жыл бұрын
Wah! I think I got the idea, thanks a lot, much better than reading a book!
@charumathib96625 жыл бұрын
super .....create more videos like this....with a picturized explanation .....one can easily understand .....next part pls😊 😊
@simpytarika78366 жыл бұрын
Awsm..am speechless ..cant use wordz for prase on your presentation on topology
@supposexy3 жыл бұрын
Outstanding Dear!!!!!!!!!!!!!!!!1 waow!!!!
@zaidsserubogo2615 жыл бұрын
I like the concept of deformation in telling a lot about what the future is preparing for us to discover
@diegozurita90734 жыл бұрын
Great video!
@KeithMakank36 жыл бұрын
Its not important to worry about why maths is important. One can assume it isn't and prove it is always.
@devanteaspon64508 жыл бұрын
Hey nice video! I really enjoyed your intuitive explanation. You made it real interesting and good luck bro!!
@rajdeepghosh73684 жыл бұрын
Hey small issue with the video... I think. Continuous deformation l is not a homeomorphism.. It's called a homotopy. A homeomorphism is just a bicontinuous bijection and in general is a much much less demanding map. For example, a trefoil knot and a circle are homeomorphic, but there is no continuous deformation possible between the two. Cheers!
@zapazap2 жыл бұрын
Is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1?
@brandonzang83937 жыл бұрын
Thanks for the awesome video! Now when my friends talk intuitively about topology, I know what to say.
@Onism__ Жыл бұрын
'every surface is homeomorphic to either a sphere, torus, double torus etc..' What about an annulus, double annulus, etc? Toruses contain a 2D hole (the space in the middle) but annuli do not (sorry if incorrect terminology). Surely they are not topologically equivalent? (I'm pretty new to topology but if anyone could explain I'd be really grateful)
@joyfuljaj3 жыл бұрын
This is late, but I'm confused about the earth "obviously" being simply connected. If we were coming from the perspective of having never seen space images of the earth, how would we figure out that all loops can be adjusted to a point? Sorry if this is stupid, but I'm stuck on that. I've been listening to math lectures while on a road trip today, so my brain is a bit tired. I came to this video to get an explanation of how a coffee cup is a torus (I kind of get that).
@-minushyphen1two379 Жыл бұрын
Get a really long string with its ends joined, then move it until it is not taut, and continue in that direction /s In seriousness, you could also use triangulation to find the Euler characteristic of the Earth, which itself has practical applications in cartography, so there’s an additional incentive to do it
@BrainyLifestyle16 күн бұрын
Made me interested. 🎉
@fritzschnitzmueller37683 жыл бұрын
I will now use this knowledge to debate flat-earthers. Earth must be a sphere!
@izzy-jd7ft4 жыл бұрын
Aye yo my g big ups man
@xyzct3 жыл бұрын
There's a lot of homeomorphism in San Francisco.
@zapazap2 жыл бұрын
Are you thinking of homorphisms?
@orcodriloorquial70527 жыл бұрын
each bridge, window, dor tunnel, .... i am not quite sure what the euler caracteristic of earth is....
@alexislopez17857 жыл бұрын
Orcodrilo Orquial p
@ambernile123 Жыл бұрын
"Next time you're out with your topologists friends..." 😂
@kingdomofknowledge59605 жыл бұрын
Excellent !
@DedhertJr3 жыл бұрын
Why this video is recommended while I'm trying to studying the topic of math?
@gmaximuspatt41225 жыл бұрын
@ Jack Li ...what program did you use to create your presentation? Thanks
@balazshorvath5342 Жыл бұрын
Two surfaces having the same euler characteristic does not garantee that they are homeomorphic. It is a required condition but it is not sufficient. In general the video is only about orientable surfaces, for which this is true, but there are also non orientable surfaces.
@kuasocto35285 жыл бұрын
Very cool video, thanks
@snacku74 ай бұрын
Hey, can you turn a torus into a kline bottle? Both euler characteristics are 0, but I believe you can’t.
@joaovaleriodesouzaneto803811 ай бұрын
very good!
@ParthSThakar3 жыл бұрын
Splendid
@B888-h2o4 жыл бұрын
Great video - I understand it
@user-te4jj2nq6q3 жыл бұрын
Thank you very much for sharing your knowledge freely. In my religion this has a big reward for you from Allah. Thank you again.
@jeremytalbot-paquet86794 жыл бұрын
Every surface is homeomorphic to a ball, a donut, an eight or a fidget spinner. Got it
@HoneycombTheywontletmeputjusto4 жыл бұрын
The human body is homeomorphic to a 7-holed donut unless you decide to pierce it
@zapazap2 жыл бұрын
This will not get you to the surfaces surrounding knots.
@PeteRoyJackson4 жыл бұрын
Great tutorial... there’s “a rat” in separate -> separable. )
@oskarhenriksson5 жыл бұрын
How do you know that Earth is simply connected?
@videostar754 жыл бұрын
He explains why at 4:30. You can shrink any loop to a point without cutting or glueing
@maxpercer71194 жыл бұрын
@@videostar75 Yes but that uses 'external information from space', and he said we can demonstrate Earth is simply connected without any external information. Also is it obvious that any loop on earth can be shrunken to a point? Have we looked at every possible loop on the surface of earth? maybe there is some loop we have not yet come across that can't be shrunken to a point (which would given evidence of a toroidal surface).
@zapazap2 жыл бұрын
@@videostar75 That holds for a sphere. To say it holds for the Earth requires more work.
@HausdorffLover4 жыл бұрын
Amazing👌🏻
@mimio83 жыл бұрын
great video!! thanks a lot
@anverHisham6 жыл бұрын
Very nice video. Thanks a lot :-)
@eleazaralmazan40895 жыл бұрын
You have a typo at 1:19. It should be vertices. Other than that, thank you for the introduction.
@Rachel-rs7jn5 жыл бұрын
"Separable" was spelled wrong too. ;)
@huangweicheng42153 жыл бұрын
very interesting and straight forward, however I guess the word "verticies" is a wrong spelling
@takyc78833 жыл бұрын
PLEASE PART TWO
@zhanna7307 Жыл бұрын
Still donut understand
@mattraymond14974 жыл бұрын
that was a homotopy and the iff statement with euler characteristic doesn’t hold
@Pure_Imagination_7282 жыл бұрын
I see some crossovers to Calc 3.
@j.megatron6 жыл бұрын
Awesome
@lintujoshua5 жыл бұрын
No words!!!
@prod.winterxphool62272 жыл бұрын
bro thats so facts
@brambeer55913 жыл бұрын
This is content.
@Idk-hg8jr3 жыл бұрын
Laughs in blender
@handledav Жыл бұрын
top
@handledav Жыл бұрын
so
@evenaicantfigurethisout4 жыл бұрын
dude. this is money. have a donut.
@gzpo2 жыл бұрын
It's pronounced, You-ler.
@CrucialFlowResearch3 ай бұрын
No
@pablogil168 Жыл бұрын
This is just wrong. You can deform a ring in a circle without cutting nor terring yet they are not homeomorphic. The ring is arch-connected when removing two points and the circle is not.
@pablogil168 Жыл бұрын
Also euler's charactistic is a topological invariant, this means that if two spaces are homeomorphic to eachother they will have the same euler's characteristic but the reciprocal statement doesn't hold. It is not an if and only if
@pablogil168 Жыл бұрын
And you missed the projective planes when talking about clasification, this just holds for orientable ones
@pablogil168 Жыл бұрын
Affine planes aee also simply connected, you missed the compact part
@NivarnaMonk2 жыл бұрын
( mathematical term for a donut 😂)
@TheRealNickG2 жыл бұрын
That is a bad definition of homeomorphism. What matters is that there is a one to one function that assigns one set to another set. Euler characteristic is only one of an infinite number of choices of such a function.
@asparkdeity87172 жыл бұрын
Two topological spaces X and Y are homeomorphic if there exists a bijection f : X -> Y such that both f and f^-1 are continuous, I think is the best way of defining it
@zapazap2 жыл бұрын
@@asparkdeity8717 All knots are homomorphic. Are they all homeorphic?
@FreeFieldSolutions Жыл бұрын
Does this guy have a cold or allergies or something??