you made me understand topology in 22 seconds. I think I heard the actual click in my mind
@HeyItsKora3 жыл бұрын
27 dislikes are from flat earthers, because you casually proved the shape of the globe just using topology 😂
@zapazap2 жыл бұрын
That the earth is a globe us an unproved lemma. Work harder.
@TD-iy8us Жыл бұрын
@@zapazap what??? The earth being a globe is proven
@zapazap Жыл бұрын
@@TD-iy8us The commenter presented the claim without proof.
@guidinglight1lul_SSstudios Жыл бұрын
@@zapazapGreenland has a special property, (how?) go to space oh wait you cant
@zapazap Жыл бұрын
@@guidinglight1lul_SSstudios If you know that can't go to space, then why did you advise me to go there? Are you engaging in good faith sir?
@dennnisjoshy23694 жыл бұрын
This is the first video of topology I ever watched. Thank you for sparking my interest.
@farnaznouraei90004 жыл бұрын
Finally! A video with simple explanation on the concept of genus!
@martyguild4 жыл бұрын
they... didn't even say the word genus
@kuhinde3 жыл бұрын
@@martyguild LMAOO
@ibrahimabdullah9277Ай бұрын
Delightfully simple and elegant presentation, TY
@AbuSayed-er9vs6 жыл бұрын
Awesome video!!! Even I can't tell in words how helpful it is for me.Please make videos about topology of glueing,cutting etc.
@sudeshnasamanta71332 жыл бұрын
Mind-blowing! Quality over quantity (5:00 min)!
@mathboy8188 Жыл бұрын
The precise claim is that every *_closed_* surface (compact connected no-boundary 2-manifold) is determined by its Euler characteristic *_and_* whether it's orientable or not.
@sem57767 жыл бұрын
This is interesting, it makes me wanna learn topology
@matthewbain93597 жыл бұрын
Wonderfully explained. Thanks a lot!
@MrFischvogel3 жыл бұрын
Excellent visual demonstration of useful applications! Make more, more, more !! =)
@zapazap2 жыл бұрын
Topology does not apply only to manifolds in R^n. Do these 'stretching' analogies apply to non T1 spaces? I ask because I am suspicious of 'rubber sheet geometry' being used as a description of topology per se.
@matheusreidopedaco2 жыл бұрын
My college needs you as a teacher!
@levimungai1846 Жыл бұрын
This explanation provides very good insight. A very good video.
@xenmaster04 жыл бұрын
This is a fabulous video. Incredibly clear and helpful. Bravo!
@chadliampearcy6 жыл бұрын
Study Group theory and real/complex analysis before touching topology. The concepts in algebra and analysis naturally lead to topology
@zapazap2 жыл бұрын
Group theory is important only to algebraic topology, not general topology. And the latter does not even require real analysis. (Though an understanding of metric spaces can certainly motivate.)
@benjaminbuzali92545 ай бұрын
And logical-mathematical psychoanalysis. started from lacan analytic discourse. Thanks for the video!!!!!!
@devanteaspon64508 жыл бұрын
Hey nice video! I really enjoyed your intuitive explanation. You made it real interesting and good luck bro!!
@dhruvvhatkar60373 жыл бұрын
clear and crisp intro to the concept.....
@huypham00813 ай бұрын
thanks for your simple explaination
@joyjeetdas68212 жыл бұрын
easiest explanation found till now great
@petelok99695 жыл бұрын
Hi Jack great video. Any chance of and introduction to manifolds? Peter
@Mrmoe198Ай бұрын
Euler is oiler? X is keye/kie? Thanks!
@joshuaharper75373 жыл бұрын
This video has saved my masters
@rajdeepghosh73684 жыл бұрын
Hey small issue with the video... I think. Continuous deformation l is not a homeomorphism.. It's called a homotopy. A homeomorphism is just a bicontinuous bijection and in general is a much much less demanding map. For example, a trefoil knot and a circle are homeomorphic, but there is no continuous deformation possible between the two. Cheers!
@zapazap2 жыл бұрын
Is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1?
@joyfuljaj3 жыл бұрын
This is late, but I'm confused about the earth "obviously" being simply connected. If we were coming from the perspective of having never seen space images of the earth, how would we figure out that all loops can be adjusted to a point? Sorry if this is stupid, but I'm stuck on that. I've been listening to math lectures while on a road trip today, so my brain is a bit tired. I came to this video to get an explanation of how a coffee cup is a torus (I kind of get that).
@-minushyphen1two379 Жыл бұрын
Get a really long string with its ends joined, then move it until it is not taut, and continue in that direction /s In seriousness, you could also use triangulation to find the Euler characteristic of the Earth, which itself has practical applications in cartography, so there’s an additional incentive to do it
@henrytan57072 жыл бұрын
Wah! I think I got the idea, thanks a lot, much better than reading a book!
@jorgeriveramx6 жыл бұрын
Very insteresting subject. Excellent explanation. Thank you so much!
@charumathib96626 жыл бұрын
super .....create more videos like this....with a picturized explanation .....one can easily understand .....next part pls😊 😊
@user-kl5gm8nm6r5 жыл бұрын
I am PHD in Topology, and this is the simplest explanation for laymen
@zapazap2 жыл бұрын
Sir: on your opinion, is 'rubber sheet geometry' a good description of general topology, whose spaces sometimes are not even T1? I am suspicious of the beauty of general topology being shortchanged.
@supposexy3 жыл бұрын
Outstanding Dear!!!!!!!!!!!!!!!!1 waow!!!!
@antoniofirenze2 жыл бұрын
Jack Li's videos: Music, music, music, music.. TOPOLOGY!!
@brandonzang83938 жыл бұрын
Thanks for the awesome video! Now when my friends talk intuitively about topology, I know what to say.
@simpytarika78366 жыл бұрын
Awsm..am speechless ..cant use wordz for prase on your presentation on topology
@Onism__ Жыл бұрын
'every surface is homeomorphic to either a sphere, torus, double torus etc..' What about an annulus, double annulus, etc? Toruses contain a 2D hole (the space in the middle) but annuli do not (sorry if incorrect terminology). Surely they are not topologically equivalent? (I'm pretty new to topology but if anyone could explain I'd be really grateful)
@orcodriloorquial70527 жыл бұрын
each bridge, window, dor tunnel, .... i am not quite sure what the euler caracteristic of earth is....
@alexislopez17857 жыл бұрын
Orcodrilo Orquial p
@theprobablyuncommonhandle6 ай бұрын
Hey, can you turn a torus into a kline bottle? Both euler characteristics are 0, but I believe you can’t.
@oskarhenriksson5 жыл бұрын
How do you know that Earth is simply connected?
@videostar755 жыл бұрын
He explains why at 4:30. You can shrink any loop to a point without cutting or glueing
@maxpercer71194 жыл бұрын
@@videostar75 Yes but that uses 'external information from space', and he said we can demonstrate Earth is simply connected without any external information. Also is it obvious that any loop on earth can be shrunken to a point? Have we looked at every possible loop on the surface of earth? maybe there is some loop we have not yet come across that can't be shrunken to a point (which would given evidence of a toroidal surface).
@zapazap2 жыл бұрын
@@videostar75 That holds for a sphere. To say it holds for the Earth requires more work.
@diegozurita90735 жыл бұрын
Great video!
@BrainyLifestyle2 ай бұрын
Made me interested. 🎉
@eleazaralmazan40895 жыл бұрын
You have a typo at 1:19. It should be vertices. Other than that, thank you for the introduction.
@Rachel-rs7jn5 жыл бұрын
"Separable" was spelled wrong too. ;)
@NonTwinBrothers3 жыл бұрын
This is interesting, it makes me wanna learn clarinet
@balazshorvath5342 Жыл бұрын
Two surfaces having the same euler characteristic does not garantee that they are homeomorphic. It is a required condition but it is not sufficient. In general the video is only about orientable surfaces, for which this is true, but there are also non orientable surfaces.
@DedhertJr4 жыл бұрын
Why this video is recommended while I'm trying to studying the topic of math?
@zaidsserubogo2615 жыл бұрын
I like the concept of deformation in telling a lot about what the future is preparing for us to discover
@xyzct4 жыл бұрын
There's a lot of homeomorphism in San Francisco.
@zapazap2 жыл бұрын
Are you thinking of homorphisms?
@huangweicheng42153 жыл бұрын
very interesting and straight forward, however I guess the word "verticies" is a wrong spelling
@fritzschnitzmueller37683 жыл бұрын
I will now use this knowledge to debate flat-earthers. Earth must be a sphere!
@gmaximuspatt41225 жыл бұрын
@ Jack Li ...what program did you use to create your presentation? Thanks
@jeremytalbot-paquet86794 жыл бұрын
Every surface is homeomorphic to a ball, a donut, an eight or a fidget spinner. Got it
@HoneycombTheywontletmeputjusto4 жыл бұрын
The human body is homeomorphic to a 7-holed donut unless you decide to pierce it
@zapazap2 жыл бұрын
This will not get you to the surfaces surrounding knots.
@mattraymond14974 жыл бұрын
that was a homotopy and the iff statement with euler characteristic doesn’t hold
@zhanna7307 Жыл бұрын
Still donut understand
@izzy-jd7ft5 жыл бұрын
Aye yo my g big ups man
@renunciant6 жыл бұрын
Its not important to worry about why maths is important. One can assume it isn't and prove it is always.
@joaovaleriodesouzaneto8038 Жыл бұрын
very good!
@kingdomofknowledge59605 жыл бұрын
Excellent !
@B888-h2o4 жыл бұрын
Great video - I understand it
@HausdorffLover4 жыл бұрын
Amazing👌🏻
@user-te4jj2nq6q3 жыл бұрын
Thank you very much for sharing your knowledge freely. In my religion this has a big reward for you from Allah. Thank you again.
@kuasocto35285 жыл бұрын
Very cool video, thanks
@mimio83 жыл бұрын
great video!! thanks a lot
@Pure_Imagination_7282 жыл бұрын
I see some crossovers to Calc 3.
@takyc78834 жыл бұрын
PLEASE PART TWO
@PeteRoyJackson4 жыл бұрын
Great tutorial... there’s “a rat” in separate -> separable. )
@anverHisham6 жыл бұрын
Very nice video. Thanks a lot :-)
@ambernile123 Жыл бұрын
"Next time you're out with your topologists friends..." 😂
@ParthSThakar4 жыл бұрын
Splendid
@j.megatron6 жыл бұрын
Awesome
@prod.winterxphool62272 жыл бұрын
bro thats so facts
@lintujoshua5 жыл бұрын
No words!!!
@brambeer55914 жыл бұрын
This is content.
@pablogil168 Жыл бұрын
This is just wrong. You can deform a ring in a circle without cutting nor terring yet they are not homeomorphic. The ring is arch-connected when removing two points and the circle is not.
@pablogil168 Жыл бұрын
Also euler's charactistic is a topological invariant, this means that if two spaces are homeomorphic to eachother they will have the same euler's characteristic but the reciprocal statement doesn't hold. It is not an if and only if
@pablogil168 Жыл бұрын
And you missed the projective planes when talking about clasification, this just holds for orientable ones
@pablogil168 Жыл бұрын
Affine planes aee also simply connected, you missed the compact part
@TheRealNickG2 жыл бұрын
That is a bad definition of homeomorphism. What matters is that there is a one to one function that assigns one set to another set. Euler characteristic is only one of an infinite number of choices of such a function.
@asparkdeity87172 жыл бұрын
Two topological spaces X and Y are homeomorphic if there exists a bijection f : X -> Y such that both f and f^-1 are continuous, I think is the best way of defining it
@zapazap2 жыл бұрын
@@asparkdeity8717 All knots are homomorphic. Are they all homeorphic?
@Idk-hg8jr3 жыл бұрын
Laughs in blender
@handledav Жыл бұрын
top
@handledav Жыл бұрын
so
@gzpo2 жыл бұрын
It's pronounced, You-ler.
@CrucialFlowResearch5 ай бұрын
No
@FreeFieldSolutions Жыл бұрын
Does this guy have a cold or allergies or something??