Is this hard integral from the 2020 Berkeley Math Tournament really that hard?

  Рет қаралды 28,977

Maths 505

Maths 505

Күн бұрын

Пікірлер: 67
@vadymshtabovenko3532
@vadymshtabovenko3532 2 жыл бұрын
blackpenredpen as well as you is guy whom i can be grateful for me being able to solve math-olimpiad integrals, both of you are the best
@maths_505
@maths_505 2 жыл бұрын
Ah man you almost made me cry tears of joy there🥺 Thank you so much
@GiornoYoshikage
@GiornoYoshikage 2 жыл бұрын
Simple and insane integral! Sure the experience helps finding clear and beautiful approaches!
@ernestschoenmakers8181
@ernestschoenmakers8181 27 күн бұрын
One can also apply Feynman's trick where you transform x into arctan(tanx) and where you put the variable a inside this arctan function. This becomes arctan(a*tanx) and differentiate under the integral sign with respect to a.
@genosingh
@genosingh 11 ай бұрын
ngl the writing tanx as cotx part is prolly the hardest part, as I never would've even thought about using ibp in this.
@TanmaY_TalK
@TanmaY_TalK Жыл бұрын
Whenever I see 0 to pi/2 my brain always tells to apply king's property
@francis6888
@francis6888 Жыл бұрын
09:42 an even easier thing to do is substitute t for pi/2 - t since the ln of an even function is still an even function.
@peternyekete6802
@peternyekete6802 25 күн бұрын
Very interesting observation. Kindly rework the problem and post it for me. Am trying to learn the techniques
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
Geometrically, this is the area under the "quadratrix" (of Hippias) - or is proportional to that area, depending on the exact values you choose for the parameters of the quadratrix.
@TanmaY_TalK
@TanmaY_TalK Жыл бұрын
Ans is pi/2 ln2 not negetive pi/2 ln2 ! [xlnsinx]0 to pi/2 then -I1 that's why your answer has an extra spicy '-' (-ve)
@そるそる-e5r
@そるそる-e5r 11 ай бұрын
My friends solved lim[x→0]xln(sinx) in this elegant way: lim[x→0]xln(sinx) =lim[x→0] x/sinx * sin(x)ln(sinx) =1 * 0=0 (∵lim[x→0]sinx/x=0, lim[t→0]tln(t) =-lim[s→∞]ln(s)/s=0)
@genosingh
@genosingh 11 ай бұрын
For proving that int from 0 to pi is same as 2 times(int from 0 to pi/2), of ln(sinx), you actually don't even have to look at the graph, you can straight up divi the integral into 2 parts one from 0 to pi/2 and the other from pi/2 to pi, and apply king's rule on the second one and sub x - pi/2 = t, and you'll prove that statement.
@renesperb
@renesperb 2 жыл бұрын
Another way of calculating the integral of ln(sinx) is to write sinx as 1/2i *Exp[i x]*(1-Exp[-2 i x]. Then one can simplify the ln of this expression as -ln 2 - i π /2 + i x+ ln(1- Exp[- 2 i x). The integral from 0 to π of the last term is zero and the integral of the first three terms gives -π ln2. But I find your solution more elegant.
@maths_505
@maths_505 2 жыл бұрын
Thanks That's why I wanted to share it I often look for solutions using real techniques only
@vinculum_mhm
@vinculum_mhm Жыл бұрын
great approach
@師太滅絕
@師太滅絕 Жыл бұрын
What about X/tan x = Xcos x / sin x, then we do substitution?
@ronnykazadi352
@ronnykazadi352 Жыл бұрын
5:27 where does the phase shift come from? Why replace x by pi/2 - x? We know cosx=sin(pi/2 - x) but i dont understand your step
@maths_505
@maths_505 Жыл бұрын
It's like a substitution t=pi/2-x but we rename the dummy variable "t" back to "x" all in one step
@ronnykazadi352
@ronnykazadi352 Жыл бұрын
@@maths_505 Ohhhhh I understand. But if that's the case then, you missed minus sign because by substitution, the integral would be from "pi/2 to 0" but to switch it back to "0 to pi/2" there is going to be a minus sign in front of the integral. That explains why your final answer is " minus pi/2 ln2" instead of "pi/2 ln2" check the minus sign that you forgot. Great video by the way.
@maths_505
@maths_505 Жыл бұрын
There is no missing negative sign🤦‍♂️🤦‍♂️🤦‍♂️....t=pi/2 - x means dt=-dx.... The extra negatives cancel out!
@takemyhand1988
@takemyhand1988 Жыл бұрын
​@@ronnykazadi352it's called King's property
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
Taking notes... Edit: huge fan of bprp too :)
@utuberaj60
@utuberaj60 Жыл бұрын
Appreciate your elementary method to solve this integral in contrast to the Feynman technique used by Blackpenredpen- who's videos I watch and subscribe too. But I see a discrepancy in the end result using the above two techniues- please pause at 4:30 of your video. Your answer is (-) Pi/2 * (ln2), whereas Blackpenredpen result is the same BUT is positive. I tried boththe methods, and confirmed this. Can you explain why this discrepancy? The methods seem Ok.
@ガアラ-h3h
@ガアラ-h3h Жыл бұрын
They both use a lengthy tiring method use kings rule and multiply to instantly kill the tan x then just integrate a polynomial and donedio
@MarceloKatayama
@MarceloKatayama Жыл бұрын
His end result is, in fact, positive. This is because his integral has a negative sign, which means that (-pi/2 ln2) is multiplied by -1, which nets pi ln2 /2
@leesweets4110
@leesweets4110 2 жыл бұрын
I took complex analysis. Very interesting subject. But it was only introductory level. Im not quite sure how complex analysis can be used to solve an integral. Can we have a lesson on that?
@maths_505
@maths_505 2 жыл бұрын
Yeah I plan on uploading an entire course on that Probably once I'm done with the course on DEs Oh snap I forgot to upload the homework solution 🤦‍♂️ Ah well...I'll do it tomorrow with another video too
@maths_505
@maths_505 2 жыл бұрын
In the meantime I plan on uploading some content on complex integration too
@moeberry8226
@moeberry8226 2 жыл бұрын
Be ready for Euler’s formula Boys.
@kamalsaleh6497
@kamalsaleh6497 Жыл бұрын
So how do we use complex analysis for the ln(sin x)?
@ガアラ-h3h
@ガアラ-h3h Жыл бұрын
Add I and subtract I then use log rules and Euler identity and do integration by parts cancel split integral into two piece then you basically have very easy integral
@par22
@par22 2 жыл бұрын
You lost me at 5:30 when you did the phase shift. How can you equate sin x = sin (pi/2 - x) = cos x ? sin x is not cos x, so it wouldn't be 2*I1... very confused.
@maths_505
@maths_505 2 жыл бұрын
Oh there's a video proving this transformation kzbin.info/www/bejne/a2rQeYp9ntV2fLM It's in the first 3 or 4 minutes (1st property)
@par22
@par22 2 жыл бұрын
@@maths_505 Awesome, thank you! I get it now. I completely forgot about that transformation
@maths_505
@maths_505 2 жыл бұрын
@@par22 no problem mate It's a pretty useful one too especially for trig integrals
@Shadow-Presentations
@Shadow-Presentations 2 жыл бұрын
So what is the actual solution of this? Like when do we take what value??
@Krishnajha20101
@Krishnajha20101 Жыл бұрын
How did you get the negative sign in the end?
@thealternativefactor6694
@thealternativefactor6694 Жыл бұрын
My head hurts..
@farhadazadi
@farhadazadi 2 жыл бұрын
Hey may I ask what software you are using to write?
@alexliu801
@alexliu801 Жыл бұрын
awesome!!!
@holyshit922
@holyshit922 2 жыл бұрын
Do you want indefinite integral which Wolfram alpa is unable to calculate ? Int(x/sqrt((x+2)^2+exp(x)),x) Hint 1 Rewrite integral as Int(x/sqrt((x+2)^2+exp(x)),x)=Int(1+(x/sqrt((x+2)^2+exp(x))-1),x) then you have to integrate two integrals but first one is easy Int(1,x)+Int((x-sqrt((x+2)^2+exp(x)))/sqrt((x+2)^2+exp(x)),x) Hint 2 To calculate integral Int((x-sqrt((x+2)^2+exp(x)))/sqrt((x+2)^2+exp(x)),x) multiply numerator and denominator by x+2+sqrt((x+2)^2+exp(x)) to get Int(1/(x+2+sqrt((x+2)^2+exp(x)))((x-sqrt((x+2)^2+exp(x)))(x+2+sqrt((x+2)^2+exp(x))))/sqrt((x+2)^2+exp(x)),x) then multiply numerator and you should see suitable substitution
@maths_505
@maths_505 2 жыл бұрын
Damn! That is a good idea I'll keep it in mind and I'll mention you in the video too
@holyshit922
@holyshit922 Жыл бұрын
Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(x)),x=Pi/2..Pi) u = Pi-x du=-dx Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(Pi-u))(-1),u=Pi/2..0) Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(u)),u=0..Pi/2) Int(ln(sin(x)),x=0..Pi) = 2Int(ln(sin(x)),x=0..Pi/2)
@moeberry8226
@moeberry8226 2 жыл бұрын
You can say what you want about blackpenredpen but he actually speaks good English and has over a million subscribers which means there’s over a million people and me who don’t agree with you.
@maths_505
@maths_505 2 жыл бұрын
Definitely one of the GOATs of KZbin maths
@spore124
@spore124 2 жыл бұрын
My friend you have formed a parasocial relationship with a person who does math problems on KZbin.
@moeberry8226
@moeberry8226 2 жыл бұрын
@@spore124 so when I state a fact about another person that means I’m in a para social relationship with that person? You sound like a 5 year old kid.
@spore124
@spore124 2 жыл бұрын
@@moeberry8226 Well, ya. You didn't post the comment as a reply to a comment and it doesn't seem relevant to anything in the video, and then you conflated 1 million subscribers as being a hivemind that thinks the same. A textbook case, right? We're not members of devout Pythagorean societies, this is just a nice place to work out math problems and learn new methods. Cool off with a nice walk or calculate a couple stress free derivatives.
@moeberry8226
@moeberry8226 2 жыл бұрын
@@spore124 your 100 percent wrong, I posted in response to another person saying he speaks bad English and saying he doesn’t like Blackpenredpen and I stated that a lot of people who view math channels do not agree with him including myself. Nothing is conflated other than you and your sarcasm. Your opinions don’t matter to facts.
@zahari20
@zahari20 2 жыл бұрын
There is no such thing as Feinman integration. This is the Leibniz rule for integrals with parameter.
@user-he4em5zx8s
@user-he4em5zx8s Жыл бұрын
Explain x->ㅠ/2-x Plz
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
Essentially, that only uses that if you integrate over the interval 0 to pi/2, sin(x) and cos(x) will take on exactly the same values, only in a different order.
@takemyhand1988
@takemyhand1988 Жыл бұрын
It's called King's property of integrals For a definite integration, if the bounds are a to b. Then the f(x) can be substituted as f(a+b-x).
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
@@takemyhand1988 That's just restating the method in general, not explaining why it actually works.
@takemyhand1988
@takemyhand1988 Жыл бұрын
@@bjornfeuerbacher5514 maybe he was confused where pi/2- x came from.
@brunojani7968
@brunojani7968 Жыл бұрын
Google variable substitution. Image you let t = pi/2-x, and a variable is only a label, and so you change it back to x
@prollysine
@prollysine 2 жыл бұрын
Hi Math 505, do you think ? int xctgx dx, /D, I/, --> =xlnsinx |0,pi/2) |0,pi/2|=0, stays: -int(ln(sinx)dx, -->/f(x)=f(a+b-x)/, int (ln(sinx)+ln(cosx))dx=--2I, -2I =int ln(cosxsinx)dx, --> Int ln((1/2)sin(2x))dx, int ln(1/2)dx + int ln(sin2x) dx = -I + -I, int -ln(2)dx = -xln2, -2I = -xln2 -I /-I=ln(sin2x)dx/ -I = -xln2 |0,pi/2) --> I = (pi/2)*ln2 = 1,08879... 2023.02.05. papa
@BikoleLege
@BikoleLege 4 ай бұрын
exellent !
Is the 2022 MIT integration bee qualifying exam too easy?
4:53
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
This integral is actually one of your favorite constants
10:40
A breathtaking integration result!
15:56
Maths 505
Рет қаралды 12 М.
integrate with the FLOOR and CEILING | MIT Integration Bee 2023
13:58
Integration Is Easy, Actually
7:29
exp(ert)
Рет қаралды 13 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
Another ridiculously awesome integral with a beautiful result
14:11
The Dirichlet Integral is destroyed by Feynman's Trick
8:15
Dr. Trefor Bazett
Рет қаралды 167 М.
The Gaussian Integral
10:09
RandomMathsInc
Рет қаралды 675 М.
Integral of ln(x) with Feynman's trick!
7:52
Mu Prime Math
Рет қаралды 667 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН