Ito's Lemma

  Рет қаралды 5,132

Mike, the Mathematician

Mike, the Mathematician

Күн бұрын

Пікірлер: 16
@LuyangHan-i1m
@LuyangHan-i1m Жыл бұрын
really thank u, that is really helpful for next week's final exam.
@mikethemathematician
@mikethemathematician Жыл бұрын
@user-qn4hf1zw1k You are welcome! I hope that the exam went well!
@joseivan2337
@joseivan2337 7 ай бұрын
excellent explanation, it is helping very much my studies
@weishao4353
@weishao4353 Жыл бұрын
excellent explanation, thank you!
@mikethemathematician
@mikethemathematician Жыл бұрын
@weishao4353 you are welcome!
@alexlee2064
@alexlee2064 10 ай бұрын
Thank you for the great lecture! When we are solving example problem, why don't we use chain rule for round_Phi/ round_t term in coefficient of dt in ito's lemma or why is it considered as 0 because I think X is function of t? I know that W(t) is not differentiable, is this because of W(t)? Does differentiation changes for stochastic process? Could you give me some detailed explanations or links I can reference?
@alexeyrogozinskiy2622
@alexeyrogozinskiy2622 9 ай бұрын
fantastic! 1000000 likes))
@mikethemathematician
@mikethemathematician 9 ай бұрын
Thanks @alexeyrogozinskiy2622
@user-wc7em8kf9d
@user-wc7em8kf9d 10 ай бұрын
Nice video and thks for sharing.
@mikethemathematician
@mikethemathematician 10 ай бұрын
@user-wc7em8kf9d Of course!
@tommackinson1716
@tommackinson1716 Жыл бұрын
Why do we ignore term of order higher than dt and not do the expansion past second order?
@mikethemathematician
@mikethemathematician Жыл бұрын
@tommackinson1716 Great question! Remember that we want (\delta t) to approach zero. When we divide by (\delta t) any term of the form (\delta t)^a where a>1 will vanish as (\delta t) tends to zero. Does that make sense?
@asadyezdan3858
@asadyezdan3858 3 ай бұрын
What’s the SDE, what does it stand for?
@andrewmapes8799
@andrewmapes8799 3 ай бұрын
Stochastic Differential Equation. Like a normal ODE but with that Weiner process W_t part
@Bbdu75yg
@Bbdu75yg Жыл бұрын
Amazing ❤
@mikethemathematician
@mikethemathematician Жыл бұрын
Thanks so much!
Black-Scholes Equation from Ito's Lemma
7:40
Mike, the Mathematician
Рет қаралды 2,4 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
Ito Lemma
5:06
MJ the Fellow Actuary
Рет қаралды 27 М.
Our First Ito Integral
21:09
John the Quant
Рет қаралды 9 М.
Deriving Black-Scholes Using Ito's Lemma
21:06
Maths Partner
Рет қаралды 22 М.
Quadratic Variation for Brownian Motions
11:38
NiklasOPF
Рет қаралды 6 М.
Itos Lemma Explained
7:01
FinanceAndEconomics
Рет қаралды 37 М.
Standard Brownian Motion / Wiener Process: An Introduction
20:06
Ito Integral-I
33:46
Probability and Stochastics for finance
Рет қаралды 46 М.
5 5 Ito s Rule, Ito s Lemma   Part 1
18:11
caltech
Рет қаралды 10 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН