Metadata Filtering for Vector Search + Latest Filter Tech

  Рет қаралды 7,549

James Briggs

James Briggs

Күн бұрын

Пікірлер: 23
@temiwale88
@temiwale88 2 жыл бұрын
Your videos and teaching style are top quality. Thanks James!
@jamesbriggs
@jamesbriggs 2 жыл бұрын
Appreciate the comment, thanks!
@number1ice
@number1ice 10 ай бұрын
Hey James. Nice video. Is it possible to filter just using the metadata? Without providing the vectors? In my use case I want to check if the doc is already in pinecone and not add it if it already exists
@johnharlow5090
@johnharlow5090 Жыл бұрын
This is great, it would be helpful to have the notebook file you used to follow along :)
@opalkabert
@opalkabert 3 жыл бұрын
Awesome explanation 👍
@alexbriggs1366
@alexbriggs1366 3 жыл бұрын
Well done on the vid
@bastabey2652
@bastabey2652 Жыл бұрын
can you turn off ANN and force an exhaustive vector search in Pinecone?
@jamesbriggs
@jamesbriggs Жыл бұрын
no just ANN in Pinecone, best to use something like Faiss for exhaustive
@MrTulufan
@MrTulufan 5 ай бұрын
can the filters be built dynamically by prompts?
@carlosalberto-mo1wj
@carlosalberto-mo1wj 28 күн бұрын
not sure if this will help, but in my case i had an agent responsibile for looking up in the user query, then on the llm prompt asked for the llm to build a response of a metadata filter format, then aplying a post-filtering to the search, based on key points inside the user prompt, not sure if this is the ideal way to work things out, but i was prety hapy with the results it is generating
@mohitaggarwal3625
@mohitaggarwal3625 Жыл бұрын
Apart from Pinecone, is there any Open Source Vector DB which allows to filter the documents using Metadata and then run vector search on filtered documents ?
@fabianaltendorfer11
@fabianaltendorfer11 Жыл бұрын
He works for Pinecone so probably not ;D
@stefanmisic7405
@stefanmisic7405 4 ай бұрын
Pg vector i think
@nickthequick13
@nickthequick13 2 жыл бұрын
Where can I read about the actual implementation of single-stage filtering ?
@jamesbriggs
@jamesbriggs 2 жыл бұрын
The details haven't been released - eventually they will be - but there's no plans as to when afaik
@alexbriggs1366
@alexbriggs1366 3 жыл бұрын
Very good content
@AndJusTIceForRob
@AndJusTIceForRob 2 жыл бұрын
Hi, James. I've arrived here from your Udemy course. I'm having difficulty locating the English/Italian multilingual Squad dataset (I'm assuming it's from Squad v1.1). Can you assist?
@jamesbriggs
@jamesbriggs 2 жыл бұрын
hi Robert! You can find an Italian SQuAD here huggingface.co/datasets/squad_it and to use it (as I know this is from a different source than that used in the course) you can follow the same steps I do in this video at ~13:14: kzbin.info/www/bejne/rWLHfniNopydeMU
@AndJusTIceForRob
@AndJusTIceForRob 2 жыл бұрын
@@jamesbriggs thanks for the assist. I have a couple follow-up questions. I can find the English SQuaD dataset and the Italian one you referenced. In this video, it appears that you are using one dataset that has both English and Italian, which I cannot seem to find. When I load either of the single-language datasets and print samples to the screen or use the keys() function, I do not see 'lang', 'vector', or 'metadata'. It also looks like I am missing a step where I need to create an index in pinecone (I set index = pinecone.Index('squad-test'), and when I run index.query(xq, top_k=3) I get PineconeProtocolError: Failed to connect; did you specify the correct index name?). Is there a prior video that covers the preparatory work to run the code in this video?
@jamesbriggs
@jamesbriggs 2 жыл бұрын
@@AndJusTIceForRob ah I see what you mean now, I believe I pulled in the two different datasets separately - this video is not a good demo for how to do all of this as it was intended to just demo the metadata filtering, I did not include the indexing step, so for indexing you should follow this video: kzbin.info/www/bejne/Y6XHZmqPq6-XfsU from around 10:45 I hope that helps, let me know if there's anything else that isn't clear
@lennonfoster9588
@lennonfoster9588 3 жыл бұрын
Nice vid
Composite Indexes and the Faiss Index Factory
17:43
James Briggs
Рет қаралды 2,9 М.
Choosing Indexes for Similarity Search (Faiss in Python)
31:33
James Briggs
Рет қаралды 22 М.
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 36 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 4,2 МЛН
SPLADE: the first search model to beat BM25
28:52
James Briggs
Рет қаралды 20 М.
RAG But Better: Rerankers with Cohere AI
23:43
James Briggs
Рет қаралды 63 М.
Better Chatbots with Semantic Routes
35:28
James Briggs
Рет қаралды 1,2 М.
What is a Vector Database Discovery API? | Qdrant 1.7.0 Explained | Part 3
22:00
Qdrant - Vector Database & Search Engine
Рет қаралды 564
Better RAG: Hybrid Search in Chat with Documents | BM25 and Ensemble
16:08
Prompt Engineering
Рет қаралды 23 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 141 М.
Product Quantization for Vector Similarity Search (+ Python)
29:37
James Briggs
Рет қаралды 11 М.
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 36 МЛН