it's more simple if you observe that a-b=1 then you know (a-b)^2=1 and you have a^3-b^3=1 . Finally you find ab=0. The next is simple
@johnstanley56925 ай бұрын
let y=(x-3)/(x^2+3) and note that (x^2+x)/(x^2+3) = 1+y (use synthetic division if this is not obvious). Problem maybe written (1+y)^3-y^3-1=0 expand to obtain 3*y^2+3*y= 0 , y=0 or y=-1; y=0=> x=3, & y=-1 => x^2+x=0 or x = 0, or x=-1,
@belengenicio86063 ай бұрын
Muy bien.
@learncommunolizer3 ай бұрын
Thank you very much 🙏❤️
@maksymkorinnyi757610 ай бұрын
Eksi....😂
@murvetaykac70418 ай бұрын
You told that solition very well.Thank you.
@АндрейПергаев-з4н7 ай бұрын
Если умножить на знаменатель, то не надо возиться с дробями
@AlbertHu-u9o10 ай бұрын
It just need patience
@Nikos_Iosifidis10 ай бұрын
Nice problem
@АндрейПергаев-з4н7 ай бұрын
Если присмотреться то если из первого числителя отнять второй равно знаменателю, это не зря
@shmuelzehavi494010 ай бұрын
Another method: The original equation is: ((x^2 + x) / (x^2 + 3))^3 - ((x - 3) / (x^2 + 3))^3 = 1 (1) This equation may be written as: a^3 + b^3 + c^3 = 0 , denoting a, b, c as: a = (x^2 + x) / (x^2 + 3) , b = - (x - 3) / (x^2 + 3) , c = -1 Is easy to show that: a + b + c = 0 and in this case: a^3 + b^3 + c^3 = 3abc = 0 . Therefore, eq. (1) reduces to: ((x^2 + x) / (x^2 + 3)) ((x - 3) / (x^2 + 3)) = 0 (2) However, x^2 + 3 ≠ 0 and therefore eq. (2) reduces to: x (x + 1) (x - 3) = 0 which gives 3 roots: x=0 , x = - 1 , x = 3
@samuelbenet00710 ай бұрын
Un truc que je voudrais voir sur tes vidéos, c’est le domaine de définition. Ici par exemple : X^2-3≠0 ===> Df = R - { -√3 ; √3}
@mathsfamily676610 ай бұрын
please more equation like this ! I love this so much
@kizerCoundSlouder10 ай бұрын
How about the same equation but make it functional?