In other words, when you are given some ugly quantity is a perfect square, Always try proving that this quantity is between two consecutive perfect squares. And your problem will be done!
@TechToppers3 жыл бұрын
Yup! A typical bounding trip which I got to know 3 months back.
@mukaddastaj52233 жыл бұрын
Lol, i dunno why, but we call it policeman's lemma😂
@AlephThree3 жыл бұрын
Nice. I like the style of leaving some of the easier bits as HW and avoiding a 20 minute video.
@kevinmartin77603 жыл бұрын
Around 9:00 when he offers a^2+2a+1 as being greater or equal to a^2+a+2 this is only true of a>0. By this point though we could have observed that the formula m=2^(a+1)-3 gives a negative m when a is zero and so excluded this case.
@mcwulf253 жыл бұрын
Well explained. I like it when the answer isn't just 0 or 1.
@GhostyOcean3 жыл бұрын
5:48 I don't understand why the middle term must be a perfect square. I follow the proof up to that point, but this step confuses me. Edit: OH! It's part of the requirements on the left. I couldn't see because Michael was standing in front of it.
@TechToppers3 жыл бұрын
We want it to be. It's not necessary. According to the problem statement.
@Luxaray20003 жыл бұрын
My favorite proof of the "exponential outpaces polynomial" fact is the following: Let P(x) = sum a_i x_i be a polynomial and E(x) be some exponential function e^(kx). Then lim as x tends to infinity of E(x) / P(x) is infinity by L'Hospital. This is because the quotient is infinity / infinity, so applying L'Hospital we get an exponential over a polynomial of degree 1 minus what we started with. Continuing this process will leave a constant polynomial in the bottom and infinity in the top.
@GhostyOcean3 жыл бұрын
Important caveats: (1) this is directionally dependant. So if x is going to positive infinity, k>0 or else e^(kx)
@mirkorosner1044 Жыл бұрын
Yes, but this does not give a quantitative bound.
@GreenMeansGOF3 жыл бұрын
What happens if we allow m,n to be negative? EDIT: The fact that we always want a perfect square forces n to be positive. If we allow m to be negative, then it can be argued similar to how it was done in the video that m=-1 and n=1 is the only other possible solution over the integers.
@vinc17fr3 жыл бұрын
No need for calculus to prove that 2^a > (a+1)^2 for a ≥ 6. This can be done by induction: true for a = 6, and then 2^a doubles at each iteration while the factor for the square is ((a+2)/(a+1))^2 < 2.
@davidbrisbane72063 жыл бұрын
That's what I thought too.
@JMTchongMbami3 жыл бұрын
8:58 a²+a+2
@ShinySwalot3 жыл бұрын
I was just warming up to studying Japanese, this sort of counts right?
@ΓιώργοςΚοτσάλης-σ1η3 жыл бұрын
Inequality proved by calculus could also be proved by induction more easily
@robonthecob5092 Жыл бұрын
4:10 why is this possible? Why can we just put that bound on m
@GeoPeronАй бұрын
This is confusing, so I recommend switching the orders in which he made the assumptions. First note how the polynomial that bounds m is less that 2^(a+2), then substitute that in for m in the bottom to create an inequality and notice how it factors into (2^a + 2)²
@goodplacetostop29733 жыл бұрын
13:57 それはいいところで止まっている
@jplikesmaths3 жыл бұрын
That’s so good 😂
@reshmikuntichandra45353 жыл бұрын
Hey Michael, It'd be great if you tried some problems from the 2021 INMO(Indian National Mathematical Olympiad). Regards, Adarsha Chandra(Fan from India)
@morbidmanatee55503 жыл бұрын
Brilliant! Love this channel
@ekramulhaque80283 жыл бұрын
One more way to solve; (n^2+1) is divisible by 2m So n^2+1 is even; consequently n^2 is odd. Therefore n is odd. n-1 is even. Let (n-1)/2=k ( eq.1). Where k is some natural no. n-1=2k. 2^(n-1)+m+4= 2^2k+m+4= (2k)^2+m+2^2. Now; 2^(n-1)+m+4 is a perfect square. So (2k)^2+m+2^2 is a perfect square. So 'm' must be equal to +2*2*2^k or -2*2*2^k. as it will give (2^k +/- 2)^2 since m is natural. We have m=2*2*2^k 2^k=m/4. 2= kth root of (m/4). Now k cannot be grater than 2 other m/4 will not be a natural no. and cannot be equal to 2. so k=1 or 2. putting (n-1)/2 =k= 1 or 2 (by eq.1) Therefore n=3 or n=5
@kensmusic11342 жыл бұрын
but this is false. 25+1/2^k+3 which is not an integer
@Reliquancy3 жыл бұрын
I thought this was going to be one of the ones where all the possible values are like 2 and 3, but that 61 and 11 works is kind of surprising.
@danielleza908 Жыл бұрын
They probably wrote the question intentionally to suit to those numbers.
@anshuldeshmukhansh73903 жыл бұрын
I got one answer (m,n) = (1,3) by just observation But second answer is quite surprising 😅😉😁👍 Thank you...
@goodplacetostop29733 жыл бұрын
HOMEWORK : Let n be an even number which is divisible by a prime bigger than √n. Show that n and n^3 cannot be expressed in the form 1 + (2x + 1)(2x + 3), i.e., as one more than the product of two consecutive odd numbers, but that n^2 and n^4 can be so expressed. SOURCE : Suggested for the 25th Spanish Olympiad but that didn’t make the cut.
@noahtaul3 жыл бұрын
The conclusion is equivalent to the number being an even perfect square, so obviously n^2 and n^4 are, but n (and therefore n^3) can’t be because it can only have one copy of the large prime in its factorization.
@keyanaskar19813 жыл бұрын
Video was uploaded 1 week ago, then how is your comment 3 weeks old?
@goodplacetostop29733 жыл бұрын
@@keyanaskar1981 Time travel
@particleonazock22463 жыл бұрын
Nice brother, but wth.
@andy-kg5fb2 жыл бұрын
1+(2x+1)(2x+3) is (2x+2)². Let p be the prime larger then √n that divides n. Then we have p²>n; Therefore p² does not divide n. Hence n is not a perfect square. Similarly you can prove that n³ is not a perfect square. N²,n⁴ are perfect squares therefore we can express them as (2x+2)² with x=(n/2)-1 and (n²/2)-1 respectively. Both of which must be natural.
@fatimahmath48193 жыл бұрын
1:13 why did you already delete the m value??
@Ardient_3 жыл бұрын
Here is an extremely hard math problem you can try: Find all (a,b,c) which are natural numbers which satisfy both of these equations: 1/a=(1/b)+(1/c)+(1/abc) and (a^2)+(b^2)=c^2 dosen't seem like much but trust me it is a monster to prove.....
@shivansh6683 жыл бұрын
Pythagorean triplets
@Subrankur7 ай бұрын
The intervention prism in math is equal to zero. Not equal one of n And one value.
@fatimahmath48193 жыл бұрын
2:15 why did you say that the denominator is equal or less than the numerator
@harivatsaparameshwaran41743 жыл бұрын
Otherwise you can get fractions / decimals and according to the question you can get only natural numbers.
@fatimahmath48193 жыл бұрын
@@harivatsaparameshwaran4174 thank you very much
@matthewdodd12623 жыл бұрын
Its not hard to see how m
@Jack_Callcott_AU3 жыл бұрын
Nice little sojourn!
@xCorvus7x3 жыл бұрын
Well, we don't need to check the perfect square condition at all, since m was constructed to be a perfect square.
@hongphitrinh60152 жыл бұрын
Why 2^(2a)+m+4
@amiasam33543 жыл бұрын
I am a time traveller
@timetraveller28183 жыл бұрын
@@aashsyed1277 liar! he is just smart
@amiasam33543 жыл бұрын
@@timetraveller2818 🤣😂🤪
@timetraveller28183 жыл бұрын
@@amiasam3354 xd
@amiasam33543 жыл бұрын
@@timetraveller2818 🤪
@helo38273 жыл бұрын
can someone please explain to me how to prove 2a^2+2a+1
@SSGranor3 жыл бұрын
This is a little inelegant; but, here goes. Assume there is some value of a such that 2a^2+2a+1=2. So, what this shows is that if the inequality holds for any a>=2, it also holds for all higher values of a. And, it just remains to check 0, 1, and 2, which is simple enough and returns 1
@yukihyde13 жыл бұрын
a mathematical induction!
@egillandersson17803 жыл бұрын
Great !
@stewartcopeland49503 жыл бұрын
the couple m = 5, n = 57 seems to work but you will see below why it isn't , through informed responses
@erikpedersen22453 жыл бұрын
sqrt(2^(57-1) + 5 + 4) = 268,435,456.0000000167638063... so m = 5 n = 57 doesn't work, 2^{n-1} + m + 4 isn't perfect square
@stewartcopeland49503 жыл бұрын
@@erikpedersen2245 Indeed, my digital calculation software rounds this number to an integer...
@richardsandmeyer44313 жыл бұрын
You seem to be incorrect here. (5,57) satisfies the first condition, namely (57^2+1)/(2*5) = 325 which is an integer. However, the second condition yields: 2^(57-1)+5+4 = 2^56+9 which is not a perfect square. It lies strictly between two consecutive perfect squares, namely (2^28)^2 and (2^28+1)^2, and therefore cannot be a perfect square itself. Did sqrt(2^56+9) perhaps look like an integer on a computer with insufficient precision?
@athysw.e.95623 жыл бұрын
He proved mathematically there's no other solution, Python won't help you...
@serdarbozdag37493 жыл бұрын
Harder one next time please!
@mukaddastaj52233 жыл бұрын
Выручили!) Мне как раз сегодня дали эту задачку, я порешала, но ничего не вышло( а это видео быдо на очереди к просмотру уже месяц, и вот как пригодилось🤩🤩
@tahirimathscienceonlinetea42733 жыл бұрын
It's very nice work .I love this challenge 👍👍👍
@richardaa68193 жыл бұрын
this was really interesting
@FedeMumble3 жыл бұрын
Nice video
@jermeekable3 жыл бұрын
please sir... can I get some theoretical maths thats not niche equation solutions?