John Baez and James Dolan, 2023-09-14

  Рет қаралды 30

John Baez

John Baez

Күн бұрын

Kähler differentials generalize 1-forms to an arbitrary commutative algebra A over a general commutative ring k:
en.wikipedia.o...
But there are even more general differentials that work for an arbitrary algebra A over k, used in noncommutative geometry. They are a universal object for derivations from A to (A,A)-bimodules. This universal derivation is obtained from D: A → A⊗A where D(a) = a⊗1 - 1⊗a, but the range of this D is really just I = ker(m) where m: A⊗A → A, and the universal derivation is D: A → I.
When A is commutative I is an ideal in A, and the Kähler differentials are d: I → Ω¹(A) where Ω¹(A) = I/I² and d comes from D. This is the universal derivation to a symmetric bimodule of A, i.e. one where the left and right actions of A agree.
The following are the same when k is a field:
1) finite separable extensions K of k,
2) finite extensions K of k with Ω¹(K) = 0,
3) finite-dimensional commutative algebras K over k that admit these structure of a special commutative Frobenius algebra.
Algebras that admit the structure of a special Frobenius algebra are called 'separable algebras'. This is a different meaning of 'separable' than in 1), but related.
All this is explained here more detail with some proofs here:
golem.ph.utexa...
golem.ph.utexa...
golem.ph.utexa...
Classification of ℤ/3 torsors over ℚ, as an example of Artin reciprocity.
For more on this whole series of conversations, go here:
math.ucr.edu/h...

Пікірлер
John Baez and James Dolan, 2023-10-02
1:42:05
John Baez
Рет қаралды 31
John Baez and James Dolan, 2023-08-31
1:40:27
John Baez
Рет қаралды 76
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
John Baez and James Dolan, 2023-07-13
1:54:27
John Baez
Рет қаралды 112
John Baez and James Dolan, 2023-08-03
1:41:02
John Baez
Рет қаралды 82
John Baez and James Dolan, 2023-08-10
1:52:57
John Baez
Рет қаралды 51
John Baez and James Dolan, 2023-07-07
1:45:58
John Baez
Рет қаралды 58
John Baez and James Dolan, 2023-08-17
2:02:51
John Baez
Рет қаралды 48
Category Theory in Epidemiology
1:02:36
John Baez
Рет қаралды 720
John Baez and James Dolan, 2023-06-01
1:39:26
John Baez
Рет қаралды 172
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН