John Baez: "Symmetric Monoidal Categories A Rosetta Stone"

  Рет қаралды 6,655

Topos Institute

Topos Institute

Күн бұрын

Пікірлер: 13
@selenium-ai
@selenium-ai 2 жыл бұрын
6:42 "It might make more sense to call it F composed with G [...], but this is the traditional ordering" True.
@raticus79
@raticus79 Жыл бұрын
I saw the "makes more sense" version called "diagrammatic order" in Category Theory for the Sciences recently. I'd say if it makes more sense, use it.
@BongoFerno
@BongoFerno 2 жыл бұрын
I wonder what kind of problems can be solved using this, and cannot be solved otherwise.
@treborhuang233
@treborhuang233 11 ай бұрын
There will never be any problems like that in mathematics. There are only problems that can be _easily_ solved using this, and is very difficult (not impossible) otherwise.
@antismatic
@antismatic 3 жыл бұрын
Can you please share some references for the "big fat engineering books which describe everything using electric circuit analogies"? Thanks
@ocnus1.61
@ocnus1.61 2 жыл бұрын
😂😂😂
@jontedeakin1986
@jontedeakin1986 2 жыл бұрын
I concur, please that sounds really fun
@majidaldo
@majidaldo 6 ай бұрын
Heat transfer
@Jaylooker
@Jaylooker 5 ай бұрын
That computation trinitarianism sounds like useful way to transform problems between category theory, logic, and computer programming. As mentioned the symmetry monoidal categories apply to this. Following these idea, P vs. NP should be able to be restated as a problem in category theory. Stable homotopy theory and K-theory are natural to consider after taking the infinite loop space of a symmetry monoidal ∞-category.
@JosiahWarren
@JosiahWarren 2 жыл бұрын
Please as senior developer. please remove the whole mobile is not turing complete rumbling. is embarasing. Out of respect.
@tyfoodsforthought
@tyfoodsforthought 2 жыл бұрын
You misunderstand; the point is that a mobile phone IS Turing complete, but IS NOT a Turing machine. Turing Machines are idealized as closed systems.
@cgibbard
@cgibbard Жыл бұрын
@@tyfoodsforthought Of course, it's also not technically Turing complete, even if you close a box around it, because it only has access to a finite amount of memory, and if you *really* close a box around it, it will also run out of power in a way that a Turing machine won't.
@SloeElvis
@SloeElvis Жыл бұрын
A senior developer that doesn't know the difference between a Turing complete system and a Turing MACHINE is what is actually embarrassing
Valeria de Paiva: "Dialectica and Kolmogorov Problems"
26:47
Topos Institute
Рет қаралды 994
Evan Patterson: "A Short Introduction to Categorical Logic"
23:00
Topos Institute
Рет қаралды 6 М.
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 84 МЛН
When u fight over the armrest
00:41
Adam W
Рет қаралды 28 МЛН
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 46 МЛН
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 1,7 МЛН
David Jaz Myers: "Three Realisms and The Idea of Sheaves"
38:52
Topos Institute
Рет қаралды 7 М.
Category Theory For Beginners: Cooking, Monoidal Categories and Programming
1:30:47
Category Theory for Neuroscience (pure math to combat scientific stagnation)
32:16
Astonishing Hypothesis
Рет қаралды 103 М.
Biology as Information Dynamics - John Baez
1:01:48
Stanford Complexity Group
Рет қаралды 25 М.
Angeline Aguinaldo: Diary of a software engineer using categories
43:44
Topos Institute
Рет қаралды 4,1 М.
John Baez - Categories: the Mathematics of Connection - IPAM at UCLA
22:00
Institute for Pure & Applied Mathematics (IPAM)
Рет қаралды 3,7 М.
ACT 2020 Tutorial: Introduction to string diagrams (Fabrizio Genovese)
55:48
Applied Category Theory
Рет қаралды 2,2 М.
Applied Category Theory
1:06:13
John Baez
Рет қаралды 13 М.
Categories 6 Monoidal categories
23:40
Richard E Borcherds
Рет қаралды 8 М.
The joy of abstract mathematical thinking - with Eugenia Cheng
51:49
The Royal Institution
Рет қаралды 63 М.
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 84 МЛН