UMAP Dimension Reduction, Main Ideas!!!

  Рет қаралды 115,785

StatQuest with Josh Starmer

StatQuest with Josh Starmer

Күн бұрын

Пікірлер: 201
@statquest
@statquest 2 жыл бұрын
To learn more about Lightning: github.com/PyTorchLightning/pytorch-lightning To learn more about Grid: www.grid.ai/ Support StatQuest by buying my book The StatQuest Illustrated Guide to Machine Learning or a Study Guide or Merch!!! statquest.org/statquest-store/
@codewithbrogs3809
@codewithbrogs3809 8 ай бұрын
After three days of coming back to this video, I think I finally got it... Thanks Josh. When I'm in a place to support, I will
@statquest
@statquest 8 ай бұрын
Bam!
@codewithbrogs3809
@codewithbrogs3809 8 ай бұрын
DOUBLE BAM
@EthanSalter3
@EthanSalter3 2 жыл бұрын
This is such perfect timing, I'm supposed to learn and perform a UMAP reduction tomorrow. Thank you!
@statquest
@statquest 2 жыл бұрын
BAM! :)
@Dominus_Ryder
@Dominus_Ryder 2 жыл бұрын
You should buy a couple of songs to really show your appreciation!
@aiexplainai2
@aiexplainai2 2 жыл бұрын
I can't appreciate how much this channel helped me - so clearly explained!!
@statquest
@statquest 2 жыл бұрын
Thank you very much! :)
@evatosco-herrera8978
@evatosco-herrera8978 2 жыл бұрын
I just found this channel. I'm currently doing my PhD in Bioinformatics and this is helping me immensely to save a lot of time and to learn new methods faster and better (I have a graphical brain so :/) Thank you so much for this!!
@statquest
@statquest 2 жыл бұрын
Good luck with your PhD! :)
@terezamiklosova104
@terezamiklosova104 2 жыл бұрын
I really appreciated the UMAP vs t-SNE part. Thanks for the video! Really helpful when one tries to get the main idea behind all the math :)
@statquest
@statquest 2 жыл бұрын
Thank you very much! :)
@smallnon-codingrnabioinfor3792
@smallnon-codingrnabioinfor3792 Жыл бұрын
I totally agree! The part starting at 16'10 is worth to look at back! Thanks a lot for this great and simple explanation!
@kennethm.4998
@kennethm.4998 2 жыл бұрын
Dude... Dude... You have a gift for explaining stats. Superb.
@statquest
@statquest 2 жыл бұрын
Thank you!
@JulietNovember9
@JulietNovember9 2 жыл бұрын
New StatQuest always gets me amped. High yield, low drag material!!!
@statquest
@statquest 2 жыл бұрын
Awesome!!!
@markmalkowski3695
@markmalkowski3695 2 жыл бұрын
This is awesome, thanks for explaining UMAP so well, and clearly explaining when to use! Love the topics you’re covering
@statquest
@statquest 2 жыл бұрын
Thank you!
@akashkewar
@akashkewar 2 жыл бұрын
Not sure if I can hold my breath for long enough before the video starts, Amazing work!! @StatQuest
@statquest
@statquest 2 жыл бұрын
Thanks!!
@VCC1316
@VCC1316 2 жыл бұрын
I'd love to see a cross-over episode between StatQuest and Casually Explained. Big bada-bam.
@statquest
@statquest 2 жыл бұрын
:)
@abramcadabros1755
@abramcadabros1755 2 жыл бұрын
Wowie, I can finally learn what UMAP stands for and how it reduces dimensionality AFTER I analysed my scRNA-seq data with it's help!
@statquest
@statquest 2 жыл бұрын
BAM!
@offswitcher3159
@offswitcher3159 2 жыл бұрын
Great Video, Thank you! You are with me since first semester and I am so happy to see a video by you on a topic that is relevant to me
@statquest
@statquest 2 жыл бұрын
Awesome!
@dexterdev
@dexterdev 2 жыл бұрын
I was waiting for this. thank you. best dimensionally reduced visual explanation out there.
@statquest
@statquest 2 жыл бұрын
Thank you very much! :)
@SuebpongPruttipattanapong
@SuebpongPruttipattanapong 28 күн бұрын
Thank you so much. you save a lot of time for me to understand UMAP. I also eager you to explain more others dimension reduction topic too! (Hope one day, the PacMap and Trimap will be get selected to explained on channel or maybe not)
@statquest
@statquest 28 күн бұрын
Thank you and I'll keep those topics in mind!
@rajanalexander4949
@rajanalexander4949 9 ай бұрын
Great video; especially liked the echo on the full exposition of 'UMAP' 😂
@statquest
@statquest 8 ай бұрын
:)
@brucewayne6744
@brucewayne6744 2 жыл бұрын
Amazing video!! Hope there is a statquest on ICA coming soon :)
@statquest
@statquest 2 жыл бұрын
One day...
@emiyake
@emiyake 9 ай бұрын
PaCMAP dimension reduction explanation video would be very appreciated!
@statquest
@statquest 9 ай бұрын
I'll keep that in mind.
@whitelady1063
@whitelady1063 2 жыл бұрын
Best comment section in KZbin Also now I get why people on office won't stop praising you BAM!
@statquest
@statquest 2 жыл бұрын
Thank you! :)
@danli1863
@danli1863 2 жыл бұрын
I must say this channel is amazing! I must say this channel is amazing! I must say this channel is amazing! Important things 3 times. :)
@statquest
@statquest 2 жыл бұрын
TRIPLE BAM! :)
@saberkazeminasab6142
@saberkazeminasab6142 2 жыл бұрын
Thanks so much for the great presentation!
@statquest
@statquest 2 жыл бұрын
Glad you enjoyed it!
@dataanalyticswithmichael8931
@dataanalyticswithmichael8931 2 жыл бұрын
Nice esplanation, i want to use this as my references for my projects
@statquest
@statquest 2 жыл бұрын
Bam! :)
@THEMATT222
@THEMATT222 2 жыл бұрын
New video!!!! Very Noice 👍
@statquest
@statquest 2 жыл бұрын
BAM!!!
@shubhamtalks9718
@shubhamtalks9718 2 жыл бұрын
Yayy. I was waiting for it.
@statquest
@statquest 2 жыл бұрын
bam!
@RelaxingSerbian
@RelaxingSerbian 2 жыл бұрын
Your little intros are so silly and charming! ^_^
@statquest
@statquest 2 жыл бұрын
Thank you!
@gergerger53
@gergerger53 2 жыл бұрын
Great video (as always). You might want to calm it down with the BAMs though. It used to be quirky and fun but having them literally every minute or two is a bit much and forced. Your video creation skills are seriously awesome. I wish I had even half your skills at making these concepts accessible for the YT audience. 👏
@statquest
@statquest 2 жыл бұрын
Noted
@agentgunnso
@agentgunnso 7 ай бұрын
Thank you so much!!! Love the sound effects and the jokes
@statquest
@statquest 7 ай бұрын
Glad you like them!
@narekatsyy
@narekatsyy Ай бұрын
GOATED channel
@statquest
@statquest Ай бұрын
bam! :)
@abdoualgerian5396
@abdoualgerian5396 Жыл бұрын
With this amazing explanation way, please consider doing a Deep TDA quest starting with the paraparapepapara funny thing instead of the songs
@statquest
@statquest Жыл бұрын
Noted
@franziskakaeppler5602
@franziskakaeppler5602 4 ай бұрын
Thank you for this great video. I have a question at 8:21min: Why are the similarity scores 1,0 an 0,6? Could they as well be e.g. 0,9 and 0,7?
@statquest
@statquest 4 ай бұрын
I'm sorry for the confusion. There's an important detail that I should have included in this video, and not just the follow up that shows the mathematical details ( kzbin.info/www/bejne/oKXLZZ57q69mhpo ): the nearest point always has a similarity score of 1.
@franziskakaeppler5602
@franziskakaeppler5602 4 ай бұрын
Thank you:)
@muriloaraujosouza462
@muriloaraujosouza462 2 ай бұрын
I was wondering the same thing! Thanks for answering Josh, you are great!
@AmandaEstevamCarvalho
@AmandaEstevamCarvalho 7 ай бұрын
Ele explica como se eu fosse uma acéfala. Só assim eu entendi, obrigada!
@statquest
@statquest 7 ай бұрын
Muito obrigado! :)
@siphosakhemkhwanazi6042
@siphosakhemkhwanazi6042 7 ай бұрын
The intro made me to subscribe😂😂
@statquest
@statquest 7 ай бұрын
bam! :)
@kiranchowdary8100
@kiranchowdary8100 2 жыл бұрын
ROCKINGGGG!!!! As always.
@statquest
@statquest 2 жыл бұрын
Thanks!
@MegaNightdude
@MegaNightdude 2 жыл бұрын
Great content. As always!
@statquest
@statquest 2 жыл бұрын
Thank you!
@rajankandel8354
@rajankandel8354 3 ай бұрын
12:44 why does UMAP decides to move point e farther from b? Is it because similarity score is zero
@statquest
@statquest 3 ай бұрын
At 12:44 we move 'b' further from 'e' because they were in different clusters in the high dimensional space.
@Littlemu22y
@Littlemu22y 3 ай бұрын
your videos are fantastic
@congmou856
@congmou856 12 күн бұрын
Hi Josh, Thank you for this helpful video! One question, how did you get the split of 1.6 at 8:17 of the video? I cannot figure out why the similarity between A and B is 1, I thought only A with itself is perfectly similar. Thank you so much!
@statquest
@statquest 11 күн бұрын
I'm not 100% certain I understand your question, however, I cover this section in much more detail in the follow up video kzbin.info/www/bejne/oKXLZZ57q69mhpo Hopefully that will help clear things up.
@samuelivannoya267
@samuelivannoya267 2 жыл бұрын
You are amazing!! Thanks!!!
@statquest
@statquest 2 жыл бұрын
Thank you!
@veronicacastaneda6274
@veronicacastaneda6274 2 жыл бұрын
Hey! I love your videos! Can you do one on Weighted correlation network analysis? I share your videos with my friends and we want to learn about it :)
@statquest
@statquest 2 жыл бұрын
I'll keep tat in mind.
@Pedritox0953
@Pedritox0953 2 жыл бұрын
Great video!
@statquest
@statquest 2 жыл бұрын
Thanks!
@floopybits8037
@floopybits8037 2 жыл бұрын
Thank you so much for this video
@statquest
@statquest 2 жыл бұрын
Most welcome 😊!
@92marjoh
@92marjoh 2 жыл бұрын
Hey Josh, Your videos have made my learning curve exponential and i truly appreciate the videos you make! I wonder, have you ever considered making a video about Bayesian target encoding (and other smart categorical encoders)?
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@paulclarke4548
@paulclarke4548 2 жыл бұрын
Great video! Thank you!! Do you have any plans to clearly explain Generative Topographic Mapping (GTM)? I'd love that!
@statquest
@statquest 2 жыл бұрын
Not right now, but I'll keep it in mind.
@sumangare1804
@sumangare1804 2 жыл бұрын
Thank your the explanation! If possible Could you do a video on HDBSCAN algorithm
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@davidhodson6680
@davidhodson6680 Жыл бұрын
Adding a comment for the cheery ukelele song at the start, I like it.
@statquest
@statquest Жыл бұрын
Thank you! :)
@meenak722
@meenak722 Жыл бұрын
Thank you very much!
@statquest
@statquest Жыл бұрын
You're welcome!
@MinsangKim-n1z
@MinsangKim-n1z 4 ай бұрын
Hello Josh, thank you so much for the amazing video! I have a question about the mapping consistency of UMAP. In the video, UMAP can keep mapping consistency (meaning that the mapping does not change over the iteration) when we map the projected points on low-dimensional plane based on high-dimensional similarity score, unlike to t-SNE. My question is, it doesn't necessarily mean the final visualization result would be consistent for all time, right? Because since there is randomized sampling, I don't think the final result would be consistent. I tried it using umap-learn lib and the result was also inconsistent. I'm not sure I explained well on my question but please feel free to tell me if there's any ambiguous points. Thank you and have a nice day :)
@statquest
@statquest 4 ай бұрын
The only way to get the exact same graph every time is to set the random seed right before you use UMAP. Although it has less randomness than t-SNE, it still has some randomness.
@ashfaqueazad3897
@ashfaqueazad3897 2 жыл бұрын
It will be great if you do some videos on sparse data if you get the time. Would love it. Thanks.
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@nbent4607
@nbent4607 10 ай бұрын
Thank you!!
@statquest
@statquest 10 ай бұрын
You're welcome!
@wlyang8787
@wlyang8787 Жыл бұрын
Hi Josh, would you please make a video about DiffusionMap? Thank you very much!
@statquest
@statquest Жыл бұрын
I'll keep that in mind.
@cytfvvytfvyggvryd
@cytfvvytfvyggvryd 2 жыл бұрын
Thank you for your terrific video! If you got time, could you made a relevant video about densMAP? Again appreciate your wonderful work! Thank you!
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@grace6228j
@grace6228j 2 жыл бұрын
Thanks for your amazing video! I am a little bit confused, it seems that UMAP is able to do clustering (based on the similarity scores) and dimensionality reduction visualization at the same time, why do researchers usually only use UMAP for visualization?
@statquest
@statquest 2 жыл бұрын
That's a great question. I guess the big difference between UMAP and a clustering algorithm is that usually a clustering algorithm gives you a metric to determine how good or bad the clustering is. For example, with k-means clustering, we can compare the total variation in the data for each value for 'k'. In contrast, I'm not sure we can do that with UMAP.
@AkashKumar-qe5jk
@AkashKumar-qe5jk 2 жыл бұрын
Great video!!! One query: What characteristics of the features/dataset we would be analyzing when we choose a smaller value of neighbors? Same question with larger values?
@statquest
@statquest 2 жыл бұрын
The number of nearest neighbors we use does not affect how the features are used. The features are all used equally no matter what.
@AU-hs6zw
@AU-hs6zw 2 жыл бұрын
Thanks!
@statquest
@statquest 2 жыл бұрын
bam! :)
@Dominus_Ryder
@Dominus_Ryder 2 жыл бұрын
StatQuest please do a UMAP tutorial in R next!
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind. However, I'm doing the mathematical details next.
@mericknal8752
@mericknal8752 2 жыл бұрын
echoing UMAP part is amazing 😂
@statquest
@statquest 2 жыл бұрын
Thanks! :)
@spenmop
@spenmop 5 ай бұрын
Your videos are awesome! Makes things so much clearer! But I have a couple of questions: How do you handle the situation where a point has many identical points (ie. high-dim distance = 0)? How to calculate sigma_i? For example, if k = 10, but 7-8 of the neighbours are duplicates with Dij = 0, then sigma_i is undefined. Do I de-duplicate the data first and then add it back in at the end? And symmetrizing: Wij' = Wji' = Wij + Wji - Wij x Wji, yes? But aren't Wij and Wji only calculated for neighbours of i and j? What happens if Wij exists, but Wji does not? Do I add i as another neighbour of j's? (but then j would have more than k neighbours) I'm so confused.
@statquest
@statquest 5 ай бұрын
To be honest, I would just try UMAP out and see what it does. It could treat duplicate points as a single point or do something else.
@Friedrich713
@Friedrich713 2 жыл бұрын
Great quest, Josh! First time I noticed the fuzzy parts on the circles and arrows. What tool are you using to make the slides? Looks damn fine!
@statquest
@statquest 2 жыл бұрын
Thanks! I draw everything in keynote.
@jatin1995
@jatin1995 2 жыл бұрын
Perfect!
@statquest
@statquest 2 жыл бұрын
Thank you!
@muriloaraujosouza462
@muriloaraujosouza462 2 ай бұрын
Hello again, and thanks for the awesome video once more! I have one question... where does the log2(k=num.neighbors) comes from? I mean, why log2(k)? and not log3(k) or log10(k) or ln(k)?
@statquest
@statquest 2 ай бұрын
That's a good question. Generally speaking, the decision is often arbitrary. Usually people pick log base 'e' because it has an easy derivative, but in this case, I have no idea what the motivation was.
@lamourpaspourmoi
@lamourpaspourmoi Жыл бұрын
Thank you! Could you do one with self organizing maps?
@statquest
@statquest Жыл бұрын
I'll keep that in mind.
@hiankun
@hiankun 2 жыл бұрын
The big picture is ❤️ 😃
@statquest
@statquest 2 жыл бұрын
You got it! BAM! :)
@rajankandel8354
@rajankandel8354 3 ай бұрын
13:27 how do you derive t distribution fit
@statquest
@statquest 3 ай бұрын
That question, and other details, are answered in the "details" video: kzbin.info/www/bejne/oKXLZZ57q69mhpo
@critical-chris
@critical-chris Ай бұрын
When you explain UMAP in terms of preserving clusters, it makes it sound like UMAP is performing a cluster analysis under the hood. Is my understanding correct, when I interpret your use of clusters in the video as a didactic "trick" rather than UMAP actually doing cluster analysis? (Because otherwise, why would we use UMAP to reduce dimensions before doing a cluster analysis, using HDBSCAN or whatever)?
@statquest
@statquest Ай бұрын
One of the most important parameters you can set for UMAP is the number of high-dimensional neighbors you want each point to have (see 7:15 ). So, in that sense, you control how high-dimensional clusters are identified even though there is no explicit clustering algorithm involved.
@critical-chris
@critical-chris Ай бұрын
​@@statquest I suppose the difference between UMAP's high-dimensional neigbours and clusters (as commonly understood) is that the high-dimensional neighbours are "ego-centric clusters" (if that makes any sense), i.e. each point has it's own "cluster" of nearest neigbours. Or am I misunderstanding things when I assume that if we set num.neighbors to 4 instead of 3, E would (or could) become part of C's "neigborhood cluster", even though E clearly belongs to a different cluster (properly understood) than C? 🤔
@statquest
@statquest Ай бұрын
@@critical-chris Yep.
@critical-chris
@critical-chris Ай бұрын
@@statquest thanks for confirming. This helps me wrap my head around UMAP. Next thing will be to figure out what that ”magic” curve is and how it changes based on the number of neighbors you select. I suppose I’ll find that in the mathematical details video… :-)
@statquest
@statquest Ай бұрын
@@critical-chris yep! :)
@ranjit9427
@ranjit9427 2 жыл бұрын
Can you make some videos on recommender systems??
@4wanys
@4wanys 2 жыл бұрын
complete list for recommender systems kzbin.info/aero/PLsugXK9b1w1nlDH0rbxIufJLeC3MsbRaa
@statquest
@statquest 2 жыл бұрын
I hope too soon!
@cssensei610
@cssensei610 2 жыл бұрын
can you cover Locality Sensitive Hashing, and do a clustering implementation in PySpark
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@alexlee3511
@alexlee3511 9 ай бұрын
Complicated dataset you referring to is the dataset that cannot be explained by one or two PC?
@statquest
@statquest 9 ай бұрын
yep
@ammararazzaq132
@ammararazzaq132 2 жыл бұрын
As PCA required correlation between features to find new principal components, does UMAP approach require correlation between features to project data onto lower dimensional space?
@statquest
@statquest 2 жыл бұрын
no
@ammararazzaq132
@ammararazzaq132 2 жыл бұрын
@@statquest So we can still see clusters even when data is not correlated?
@statquest
@statquest 2 жыл бұрын
@@ammararazzaq132 That I don't know. All I know is that UMAP does not assume correlations.
@ammararazzaq132
@ammararazzaq132 2 жыл бұрын
@@statquest Okay thankyou. I will look into it a bit more.
@Chattepliee
@Chattepliee 2 жыл бұрын
I've read that UMAP is better at preserving inter-cluster distance information relative to tSNE, what do you think? Is it reasonable to infer relationships between clusters on a UMAP graph? I try to avoid doing so with tSNE.
@statquest
@statquest 2 жыл бұрын
To be honest, it probably depends on how you configure the n_neighbors parameter. However, to get a better sense of the differences (and similarities) between UMAP and t-SNE, see the follow up video: kzbin.info/www/bejne/oKXLZZ57q69mhpo
@samggfr
@samggfr 2 жыл бұрын
Concerning distance information, initialization and parameters are important. Read "The art of using t-SNE for single-cell transcriptomics" pubmed.ncbi.nlm.nih.gov/31780648/ and "Initialization is critical for preserving global data structure in both t-SNE and UMAP" dkobak.github.io/pdfs/kobak2021initialization.pdf
@flc4eva
@flc4eva 2 жыл бұрын
I might have missed this, but how does UMAP initializes a low-dimensional graph? Is it randomized as done in tSNE?
@statquest
@statquest 2 жыл бұрын
This is answered at 16:43
@indolizacja9829
@indolizacja9829 4 ай бұрын
Have you considered comparing UMAP and Concordex? :)
@statquest
@statquest 4 ай бұрын
Not yet.
@andreamanfron3199
@andreamanfron3199 2 жыл бұрын
i just love you
@statquest
@statquest 2 жыл бұрын
Thanks!
@rafayelkosyan9301
@rafayelkosyan9301 Ай бұрын
I would like to understand if the process of making the similarity coefficient symmetric is correct. AC=(0.6+06)/2=0.6 and BC=(0.6+1)/2 = 0.8 I think
@statquest
@statquest Ай бұрын
At 10:21 I say that UMAP uses a method that is similar to taking the average, but it's not the same as taking the average. So your numbers are not correct. To learn about the difference, see the follow up video: kzbin.info/www/bejne/oKXLZZ57q69mhpo
@LazzaroMan
@LazzaroMan 2 жыл бұрын
Love you
@statquest
@statquest 2 жыл бұрын
Thank you!
@김광우-w8m
@김광우-w8m 2 жыл бұрын
I have a question. After moving d closer to e, do we still consider moving d to c? Or, would c be moved to d? The direction in the video confuses me.
@statquest
@statquest 2 жыл бұрын
When we move 'd', we consider both 'e' and 'c' at the same time. In this case, moving 'd' closer to 'e' and closer to 'c' will increase the neighbor score for 'e' a lot but only increase the score for 'c' a little, so we will move 'd'. For details, see: kzbin.info/www/bejne/oKXLZZ57q69mhpo
@leamon9024
@leamon9024 2 жыл бұрын
Hello sir, would you cover a dimension reduction technique which uses hierarchical or k-means clustering if possible? Thanks in advance.
@statquest
@statquest 2 жыл бұрын
I'll keep that in mind.
@pranilpatil4109
@pranilpatil4109 5 ай бұрын
But we can we seperate those clusters? We need cluster centroids for that.
@statquest
@statquest 5 ай бұрын
UMAP isn't a clustering method, it's a dimension reduction method. If you want to find clusters, try DBSCAN: kzbin.info/www/bejne/iHW9hpeIiKmCpc0
@joejohnoptimus
@joejohnoptimus 8 ай бұрын
How does UMAP identify these initial clusters to begin with?
@statquest
@statquest 8 ай бұрын
You specify the number of neighbors. I talk about this at various times, but 17:18 would be a good review.
@prashantsharma-sr5dl
@prashantsharma-sr5dl 9 ай бұрын
how did the low dimensional plot came just after the similarity score?
@statquest
@statquest 9 ай бұрын
At 4:14 I talk about how the main idea is that we start with an initial (somewhat random) low dimensional plot that we then optimize based on the high dimensional similarity scores.
@gama3181
@gama3181 2 жыл бұрын
Hi-dimentional BAAAMM!
@statquest
@statquest 2 жыл бұрын
I love it! BAM! :)
@juanete69
@juanete69 2 жыл бұрын
But how do you "decide" that a cluster is a distant cluster? PS: I guess you consider a point as a distant point if it's not among the k neighbors.
@statquest
@statquest 2 жыл бұрын
correct
@juanete69
@juanete69 2 жыл бұрын
@@statquest But do you keep "adding" new points to the cluster if they are within the k neighbors of the next point, and so on? Or in order to define the cluster you only consider the k neighbors of the first point?
@statquest
@statquest 2 жыл бұрын
@@juanete69 We start with a single point. If it has k neighbors, we call it a cluster and the neighbors to the cluster. Then, for each neighbor that has k neighbors, we add those neighbors and repeat until the cluster is surrounded by points that have fewer than k neighbors.
@ali-om4uv
@ali-om4uv 2 жыл бұрын
How does umap know which high dimensional datapoint belongs to which cluster?
@statquest
@statquest 2 жыл бұрын
The similarity scores.
@TheEbbemonster
@TheEbbemonster 2 жыл бұрын
Seems very convoluted compared to K-means or hclust.
@statquest
@statquest 2 жыл бұрын
UMAP uses a weighted clustering method, so that points that are closer together in high-dimensional space will get higher priority to be put close together in the low dimensional space.
@TJ-hs1qm
@TJ-hs1qm 2 жыл бұрын
auto-like 👍
@statquest
@statquest 2 жыл бұрын
bam!
@sapito169
@sapito169 2 жыл бұрын
i think he will sing all the video XD
@statquest
@statquest 2 жыл бұрын
:)
@AHMADKELIX
@AHMADKELIX Жыл бұрын
Permissionntomlearn sir
@statquest
@statquest Жыл бұрын
:)
@connorfrankston5548
@connorfrankston5548 2 жыл бұрын
Thanks, I appreciate the information. However, I think your videos would be easier to watch with a reduction of the "bam" dimension.
@statquest
@statquest 2 жыл бұрын
Noted!
@ScottSummerill
@ScottSummerill 2 жыл бұрын
UMAP is a MESS. No thank you.
@statquest
@statquest 2 жыл бұрын
noted
@dummybro499
@dummybro499 2 жыл бұрын
Don't say bam....!! It irritates
@statquest
@statquest 2 жыл бұрын
noted
@maburwanemokoena7117
@maburwanemokoena7117 5 ай бұрын
@@dummybro499 Double Bam!!!
@Hazalgk
@Hazalgk 4 ай бұрын
@@statquestI like it though
@francescoscarlatti1533
@francescoscarlatti1533 2 ай бұрын
Yes please stop 😂 Thanks for the video it was clear!
@redyican5341
@redyican5341 Ай бұрын
Say bam and don’t listen to haters
@navaneethansanthanam2037
@navaneethansanthanam2037 4 күн бұрын
Thanks!
@statquest
@statquest 4 күн бұрын
TRIPLE BAM!!! Thank you for supporting StatQuest!!! :)
UMAP: Mathematical Details (clearly explained!!!)
16:02
StatQuest with Josh Starmer
Рет қаралды 38 М.
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 39 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 54 МЛН
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 57 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 16 МЛН
Entropy (for data science) Clearly Explained!!!
16:35
StatQuest with Josh Starmer
Рет қаралды 641 М.
StatQuest: Principal Component Analysis (PCA), Step-by-Step
21:58
StatQuest with Josh Starmer
Рет қаралды 3 МЛН
Naive Bayes, Clearly Explained!!!
15:12
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Large Language Models explained briefly
8:48
3Blue1Brown
Рет қаралды 858 М.
StatQuest: t-SNE, Clearly Explained
11:48
StatQuest with Josh Starmer
Рет қаралды 482 М.
Word Embedding and Word2Vec, Clearly Explained!!!
16:12
StatQuest with Josh Starmer
Рет қаралды 350 М.
UMAP explained | The best dimensionality reduction?
9:16
AI Coffee Break with Letitia
Рет қаралды 63 М.
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 39 МЛН