k refers to number of studies, in research world, that's why it use k in k means it means here we are studying on cluster, and n refers to number of outcomes in research world, so that's why in sklearn the parameter name is n_clusters because using that algorithm we wants outcome after running that algorithm it will gives us the n number of outcomes. I hope my research is correct 😊
@UnfoldDataScience3 жыл бұрын
Three 👏👏👏 for you.
@muhammedthayyib92022 жыл бұрын
Oh great. I commented another answer, from common sense. 😀
@SESHUNITR2 жыл бұрын
Very Good information from interview. keep doing thanks.
@ramyaanand36683 жыл бұрын
Exactly i was looking for same thing n i found it by u aman great video its has so much information....thnku so much aman keep exploring more
@UnfoldDataScience3 жыл бұрын
Welcome Ramya.
@vinodbiradar52663 жыл бұрын
Would like to add one more point in KMEANS++, It internally analyzes the pattern of the data. Such as the spread of data (whether it is spherical, rectangle, oval etc.) and then initialize the centroids as explained.
@UnfoldDataScience3 жыл бұрын
Yes Vinod. Thanks for adding it.
@chandramouli58812 жыл бұрын
This video helped me to understand K means. Thanks for the sharing
@UnfoldDataScience2 жыл бұрын
Welcome Chandra.
@Monuchaitu443 жыл бұрын
Your videos were like cheat sheets for revising and remembering concepts very easily. Good and Great Job.
@UnfoldDataScience3 жыл бұрын
Thanks Again. Please share in your data science groups if possible. That will be helpful for channel.
@Monuchaitu443 жыл бұрын
@@UnfoldDataScience Sure, I will make it to happen.
@AnkitSingh-rd3he3 жыл бұрын
Due to its ubiquity, it is often called "the k-means algorithm"; it is also referred to as Lloyd's algorithm, particularly in the computer science community. It is sometimes also referred to as "naïve k-means", because there exist much faster alternatives
@ajaykushwaha-je6mw3 жыл бұрын
very very informative video.
@UnfoldDataScience3 жыл бұрын
Thanks Ajay.
@kushalhu71892 жыл бұрын
Brilliant Sir.....
@UnfoldDataScience2 жыл бұрын
Thanks Kushal.
@vishalbhapkar23593 жыл бұрын
I have been following this channel since very beginning, now I can say this works pretty much for me, thanks @unfold data science and Mr. Aman Sir
@UnfoldDataScience3 жыл бұрын
Thanks Vishal. :)
@sudheeshe13843 жыл бұрын
Thanks for the valuable contents
@UnfoldDataScience3 жыл бұрын
Welcome Sudheesh :)
@theethumnandrumpirartharav41372 жыл бұрын
Awesome👍
@UnfoldDataScience2 жыл бұрын
Thank you! Cheers!
@sandipansarkar92113 жыл бұрын
finished watching
@himanshugautam14213 жыл бұрын
Loved it.
@UnfoldDataScience3 жыл бұрын
Thanks Himanshu :)
@muhammedthayyib92022 жыл бұрын
K stands for a number. That number in a whole number. It cannot have 1.5 number of cluster. In cross validation we use K-flod. Then why not n. n is like a random selection but K is like a choose the best number. Thank you aman
@kaanchii1233 жыл бұрын
Thank you, you are a great teacher!
@UnfoldDataScience3 жыл бұрын
You're very welcome!
@nishanthvirat90449 ай бұрын
thank you so much sir
@harithavalmiki93902 жыл бұрын
Thank you so much for this explanation Aman!
@UnfoldDataScience2 жыл бұрын
My pleasure
@callmace3 жыл бұрын
Gr8
@UnfoldDataScience3 жыл бұрын
Thanks Tausif :)
@samruddhideshmukh59283 жыл бұрын
Great video!!!
@UnfoldDataScience3 жыл бұрын
Thanks Samruddhi.
@souravbiswas68922 жыл бұрын
Excellent video. I wish I would have seen this video before my final round of interview in Walmart. I became heartbroken when I was not selected :(
@yash422vd3 жыл бұрын
N number of appreciation for your style of explanation is less, another great video. Your simplicity is your best asset.
@UnfoldDataScience3 жыл бұрын
So nice of you Vishal. :)
@vallimuthaiyah50983 жыл бұрын
Thank you sir for such a valuable content and information on silhouette score.. please upload more interviews questions with hidden information.. K in k means clustering refers to number of clusters but not sure why it is called as using letter K
@UnfoldDataScience3 жыл бұрын
Thanks a lot for watching.
@pramodyadav44223 жыл бұрын
Eagerly waiting to know why it's called K-Means
@qazibasheer443 Жыл бұрын
The k-means clustering algorithm is called "k-means" because it specifically partitions the data into "k" clusters based on the mean of the data points. Other clustering algorithms may use different criteria for clustering, such as "n-means" which partitions the data into "n" clusters, or "s-means" which partitions the data based on the sum of squared distances. However, the k-means algorithm uses the mean of the data points to calculate the centroids, and it partitions the data into "k" clusters. Therefore, it is called k-means.
@srprev3 жыл бұрын
Due to its ubiquity, it is often called "the k-means algorithm" :)
@ArunSingh-bj6ux3 жыл бұрын
Hi , Could you cover the logic behind croston method forecasting
@UnfoldDataScience3 жыл бұрын
Thanks Arun for feedback. Will add.
@abithaanand7170 Жыл бұрын
Sir in 3:01 sec, I don't understand thw concept of how the convergence speed would be slow if two clusters are located near . Similarly, how would the convergence speed be faster if two clusters are not located together?
@shashankhegde12582 жыл бұрын
The elbow curve comes in the shape of K ?
@praveenkuthuru74393 жыл бұрын
In my opinion, the k-NN algorithm which was coined in 1951 tries to find out the nearest neighbor w.r.t. the distance function similar to k-Means which was coined post 1951, due to this reasons the 'k' is maintained as is since then and not any other letter. Is it right????
@UnfoldDataScience3 жыл бұрын
This one i did not hear yet. What I know is, in statistics K is typically used for number of groups to analyze, hence.
@DaughterOfGodJG18 күн бұрын
K-Means: The name reflects the research perspective where K represents the grouping or study of clusters. n_clusters (Sklearn): This parameter name emphasizes the outcome-oriented view, where "N" is the number of cluster results to expect.
@terryterry37333 жыл бұрын
Super bro nice explanation and one thing i want to understand HOW KMEAN GETS OVERFIT? Pls give me the couple of details i didnt get the ans in internet .
@UnfoldDataScience3 жыл бұрын
Overfitting is typically a problem in supervised learning, not k-means generally.
@rishigupta23422 жыл бұрын
Could you discuss interview question based on Decision tree & Random forest?
@UnfoldDataScience2 жыл бұрын
Sure,
@MohitGupta-sz4bh3 жыл бұрын
Very informative and helpful video Aman. keep up the good work. We would like to have this kind of interview questions and answers video on every Machine Learning Algorithm to crack the interview. Please do create video on other algorithms. Again superb a wonderful job :)
@UnfoldDataScience3 жыл бұрын
Thanks Mohit. Sure.
@bangarrajumuppidu83543 жыл бұрын
who will take care of random picking points for initialization of centroid
@UnfoldDataScience3 жыл бұрын
Python itself through "k-means" module
@bangarrajumuppidu83543 жыл бұрын
@@UnfoldDataScience thank u sir
@sampathvinaykumarreddymajj7903 жыл бұрын
Need these kind of videos But why it is called K-Means ??
@UnfoldDataScience3 жыл бұрын
Thanks Sampath. Pls do try to find out 😁😄
@yt-11612 жыл бұрын
In order to get people to confuse it with K nearest neighbors
@amarmemane25833 жыл бұрын
Hello sir, please make this kind of interview qun video on each machine learning algorithm if u want we are ready to fee for that also😊
@UnfoldDataScience3 жыл бұрын
Thanks Amar for suggestion. Noted.
@souravbiswas68922 жыл бұрын
Because any parameter which can be tuned/tweaked, is represented by 'k' and not by a,b,c,d..
@nishah4058 Жыл бұрын
Can u pls elaborate your answer?
@abhinavkhandelwal10453 жыл бұрын
I have a question.. if I have trained my data on 2 models for instance Random forest and logistic regression and it is giving me the same accuracy then what should be the basis to decide which one the two algorithms should I select for my data
@UnfoldDataScience3 жыл бұрын
Depends on business need.
@abhinavkhandelwal10453 жыл бұрын
If a business sets free then what must be a parameter to strike out one of the Random forest and logistic regression if giving same accuracy?
@jaysoni78123 жыл бұрын
@@abhinavkhandelwal1045 choose whichever model is fast or give quick prediction. if your both model gives same accuracy then choose that model which is faster, it will help you to quick prediction
@letslearndatasciencetogeth4793 жыл бұрын
Sir pls make a video on the mathematics behind silhouette score in detail
@UnfoldDataScience3 жыл бұрын
I was thinking someone will ask, I will do it :)
@letslearndatasciencetogeth4793 жыл бұрын
@@UnfoldDataScience thanks sir for the amazing explanation
@vignesan41973 жыл бұрын
Hello sir please any junior level data scientist job available please inform.