Kevin Summers, short talk, "A dual basis for the equivariant quantum K-theory of cominuscule spaces"

  Рет қаралды 33

Schubert Seminar

Schubert Seminar

Күн бұрын

Abstract: The equivariant quantum $K$-theory ring of a flag variety is a Frobenius algebra equipped with a perfect pairing called the quantum $K$-metric. It is known that in the classical $K$-theory ring for a given flag variety the ideal sheaf basis is dual to the Schubert basis with regard to the sheaf Euler characteristic. We define a quantization of the ideal sheaf basis for the equivariant quantum $K$-theory of cominuscule flag varieties. These quantized ideal sheaves are then dual to the Schubert basis with regard to the quantum $K$-metric. We provide explicit type-uniform combinatorial formulae for the quantized ideal sheaves in terms of the Schubert basis for any cominuscule flag variety. Time permitting, we will also discuss an application utilizing the quantized ideal sheaves to calculate the Schubert structure constants associated to multiplication by the top exterior power of the tautological quotient bundle in $QK_T(Gr(k,n))$.

Пікірлер
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
Непосредственно Каха: сумка
0:53
К-Media
Рет қаралды 12 МЛН
Stocks plunge while yields climb, oil hits highest level since October
5:16
3 Simple Steps to Retire in 2025
16:55
James Conole, CFP®
Рет қаралды 32 М.
Scott Larson, "Positivity in Weighted Flag Varieties"
19:38
Schubert Seminar
Рет қаралды 60
The 60/40 Portfolio in 2025: What to Expect
6:55
Morningstar, Inc.
Рет қаралды 1,3 М.
Brendan Hassett, part2, `Rationality of twisted moduli'
32:04
Schubert Seminar
Рет қаралды 22
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН