Hey all! Been a little while since I have posted, but trying to get back into the swing of things. Hope everyone is doing well. Based on a lot of feedback I have gotten, my current plan is to make a web scraping tutorial with beautiful soup next. Not quite sure what will come after that. Does anyone have any suggestions? Would love to hear them :).
@thebeston67104 жыл бұрын
sup keith galli, i need help trying to fix a bug in this code. This is a game where there is a player and it has to dodge the enemies. But for some reason I still die if i haven't touced any of the enemies. How do you fix that bug? import turtle import random import time from random import randint wn = turtle.Screen() wn.bgcolor('black') wn.setup(600, 800) x = random.randint(-290, 290) y = random.randint(395, 500) x1 = -290 x2 = 290 y1 = 395 y2 = 1000 pm = 10 em = 5 ed = 44 s = 1 score = 0 p = turtle.Turtle() p.hideturtle() p.penup() p.speed(0) p.color('red') p.shape('circle') p.shapesize(stretch_wid = 2, stretch_len = 2) p.goto(0, -350) p.showturtle() enemy_colors = ['darkblue', 'cyan', 'green', 'yellow', 'purple', 'pink', 'brown', 'white', 'orange', 'lightgreen', 'blue'] random_color = random.choice(enemy_colors) e1 = turtle.Turtle() e1.hideturtle() e1.color(random_color) e1.penup() e1.speed(0) e1.shape('square') e1.shapesize(stretch_wid=2, stretch_len=2) e1.goto(x, y) e1.showturtle() e1.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e2 = turtle.Turtle() e2.hideturtle() e2.color(random_color) e2.penup() e2.speed(0) e2.shape('square') e2.shapesize(stretch_wid=2, stretch_len=2) e2.goto(x, y) e2.showturtle() e2.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e3 = turtle.Turtle() e3.hideturtle() e3.penup() e3.speed(0) e3.color(random_color) e3.shape('square') e3.shapesize(stretch_wid=2, stretch_len=2) e3.goto(x, y) e3.showturtle() e3.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e4 = turtle.Turtle() e4.hideturtle() e4.penup() e4.speed(0) e4.color(random_color) e4.shape('square') e4.shapesize(stretch_wid=2, stretch_len=2) e4.goto(x, y) e1.showturtle() e4.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e5 = turtle.Turtle() e5.hideturtle() e5.penup() e5.speed(0) e5.color(random_color) e5.shape('square') e5.shapesize(stretch_wid=2, stretch_len=2) e5.goto(x, y) e5.showturtle() e5.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e6 = turtle.Turtle() e6.hideturtle() e6.penup() e6.speed(0) e6.color(random_color) e6.shape('square') e6.shapesize(stretch_wid=2, stretch_len=2) e6.goto(x, y) e6.showturtle() e6.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e7 = turtle.Turtle() e7.hideturtle() e7.penup() e7.speed(0) e7.color(random_color) e7.shape('square') e7.shapesize(stretch_wid=2, stretch_len=2) e7.goto(x, y) e7.showturtle() e7.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e8 = turtle.Turtle() e8.hideturtle() e8.penup() e8.speed(0) e8.color(random_color) e8.shape('square') e8.shapesize(stretch_wid=2, stretch_len=2) e8.goto(x, y) e8.showturtle() e8.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e9 = turtle.Turtle() e9.hideturtle() e9.penup() e9.speed(0) e9.color(random_color) e9.shape('square') e9.shapesize(stretch_wid=2, stretch_len=2) e9.goto(x, y) e9.showturtle() e9.right(90) random_color = random.choice(enemy_colors) x = random.randint(x1, x2) y = random.randint(y1, y2) e10 = turtle.Turtle() e10.hideturtle() e10.penup() e10.speed(0) e10.color(random_color) e10.shape('square') e10.shapesize(stretch_wid=2, stretch_len=2) e10.goto(x, y) e10.showturtle() e10.right(90) pen = turtle.Turtle() pen.hideturtle() pen.penup() pen.goto(0, 360) pen.color('white') def move_right(): x = p.xcor() x += pm if x > 290: x = 290 p.setx(x) def move_left(): x = p.xcor() x -= pm if x < -290: x = -290 p.setx(x) def move_up(): y = p.ycor() y += pm if y > 390: y = 390 p.sety(y) def move_down(): y = p.ycor() y -= pm if y < -390: y = -390 p.sety(y) wn.listen() wn.onkeypress(move_left, 'Left') wn.onkeypress(move_right, 'Right') wn.onkeypress(move_up, 'Up') wn.onkeypress(move_down, 'Down') run = True while run: wn.update() em += 0.04 e1.fd(em) e2.fd(em) e3.fd(em) e4.fd(em) e5.fd(em) e6.fd(em) e7.fd(em) e8.fd(em) e9.fd(em) e10.fd(em) if e1.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e1.color(random_color) e1.goto(100000000000, 100000000000) e1.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e2.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e2.color(random_color) e2.goto(100000000000, 100000000000) e2.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e3.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e3.color(random_color) e3.goto(100000000000, 100000000000) e3.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e4.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e4.color(random_color) e4.goto(100000000000, 100000000000) e4.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e5.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e5.color(random_color) e5.goto(100000000000, 100000000000) e5.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e6.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e6.color(random_color) e6.goto(100000000000, 100000000000) e6.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e7.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e7.color(random_color) e7.goto(100000000000, 100000000000) e7.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e8.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e8.color(random_color) e8.goto(100000000000, 100000000000) e8.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e9.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e9.color(random_color) e9.goto(100000000000, 100000000000) e9.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if e10.ycor() < -395: x = random.randint(x1, x2) y = random.randint(y1, y2) random_color = random.choice(enemy_colors) e10.color(random_color) e10.goto(1000000000000, 100000000000) e10.goto(x, y) score += 1 pen.clear() pen.write('{}'.format(score), align='center', font=('courier', 24, 'normal')) if p.distance(e1) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e2) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e3) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e4) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e5) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e6) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e7) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e8) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e9) < ed: time.sleep(s) print('Score:', score) quit() if p.distance(e10) < ed: time.sleep(s) print('Score:', score) quit() wn.mainloop()
@SSSNIPD4 жыл бұрын
I have done andrew ng's machine learning course. It would be awesome if you could explain how to apply those concepts to python and start machine learning in python.
@arhataria4 жыл бұрын
Another series of real "business" world data science tasks (using pandas and machine learning together!) would be awesome :D I'm from a non-IT background and the last series you posted actually helped me a lot at my work!!! Thanks a lot :)
@thebeston67104 жыл бұрын
Can you try to do OpenGL
@CassieYT14 жыл бұрын
Maybe a video on GANs would be cool?
@pkPatricia3 жыл бұрын
Keith cannot thank you enough, there are places that present this topic in like 6 hours or something and you got to the point and really filled in some gaps I had with this concept. Very nice!
@afrozahmad31734 жыл бұрын
Keith u finally posted u dont know how much i wait for your tutorials man and thx for the NN vid very good and u explain very well.Stay safe at home guys
@KeithGalli4 жыл бұрын
Sorry for keeping you waiting! I appreciate your support 🙌
@omkarsatapathy82093 жыл бұрын
Great job body. You made me love CNN 😃. I am accepting you as my teacher ☺️🙏
@satchsumner-waldman87612 жыл бұрын
Keith, your videos are unbelievably good, I've watched almost one per day for a week straight. Thanks so much for putting out this content!
@CodeEmporium4 жыл бұрын
Gotta love those details. Awesome work!
@KeithGalli4 жыл бұрын
Thanks man! Big fan of your videos :)
@jasminehuang3611 Жыл бұрын
Hi Keith, really, can't thank you enough for making all the amazing videos that's perfect and easy to understand for someone like me who's first language isn't English :)
@KeithGalli Жыл бұрын
Glad that you enjoy them and happy to hear my English is easy enough to understand! :)
@sireechan4 жыл бұрын
Thank you soo much, your explanation is relatable and easy to understand! :) I can't believe you are teaching for free. Happy to learn from you ☺️
@renipratiwi57204 жыл бұрын
i gladi find your channel. now i know how to resolve my main problem in my rock-paper-scissors exam. youve got a new subs!
@seekergx80964 жыл бұрын
Thank you so much man! I've been studying ML like crazy and even so it's hard to get going without seeing someone do it first, you're really helping me out!
@ajayrana42963 жыл бұрын
this is how teaching should be... love u brother
@tamoorkhan32624 жыл бұрын
The most illustrative tutorial on TensorFlow & Keras regarding NN and CNN. (Y)
@cagataykirici98784 жыл бұрын
It has now become an awesome rock-paper-scissors series man, thank you!
@saadbenbrahim9544 жыл бұрын
Thank you! My man for this tutorial. A watcher from Morocco
@KeithGalli4 жыл бұрын
You're welcome :). Would love to visit Morocco some day!
@saadbenbrahim9544 жыл бұрын
@@KeithGalli you're welcome, I will be happy to show you around.
@wt76584 жыл бұрын
It is very helpful for my preparation for the Tensorflow cert exam. Thanks very much!
@wiz80584 жыл бұрын
Finally Keith brought us our favorite food. Thanks 🙏🏼. Love how you made it too. Best tuition and keep it up bro
@richarddankwah30884 жыл бұрын
Hey !!! Mr. Galli is been a while, Infact your Tutorials on Data Analysis with python on that Mobile electronics and appliance was superb. It helped me to complete my project. Thou I found out few lapses and was a challenge which I was able to solve them myself and I did like a charm. You gave me that boldness to apply for few Jobs with my new project. Thank you. But the lapses really strengthen me very well and made me exploit more on different ways of writing codes. "But there is One last step you failed to do with that data, that is Predicting future sales with the data. Please kindly come back to fill that gap for us please . "Using Tensorflow and Keras with LSTM and or ARIMA model to predict future sale on items and dates". Still in waiting, you already have 3 stars with me, waiting for the part 2, (Using Tensorflow and Keras with LSTM and or ARIMA model to predict future sale on items and dates) which will be 2 stars to complete a 5 Star. Stillll In waiting !!!!!!!!!!!!!!!!!!!!!!
@Mei-ChiShih2 жыл бұрын
May I have a question? Why my terminal shows " cannot reshape array of size 226800000 into shape (372,300,300,1)" while I ran this code"train_images = train_images.reshape(2520, 300, 300, 1) test_images = test_images.reshape(372, 300, 300, 1)".
@MrKrishnalovesyou4 жыл бұрын
Stay safe my dear friend Keith, I m Indian & here covid cases are increasing 🇮🇳
@KeithGalli4 жыл бұрын
Sorry to hear that covid cases are increasing over there :/. Hope you stay safe & healthy as well. We all will get through this!
@MrKrishnalovesyou4 жыл бұрын
@@KeithGalli Yes Keith... We will fight & win ✌️
@prashantbisht22194 жыл бұрын
@@MrKrishnalovesyou Bht hi ache bhai, mjaa hi aagya
@lucky4the4turtle4 жыл бұрын
You're Back!!!!! Dude we've missed you!!
@quytrannhat113 жыл бұрын
extremely good, easy to understand, good job bro
@qingdekueh71863 жыл бұрын
Hi, how do you use this to predict a new image if it is rock paper or scissor? :(
@RamiroAsincrono4 жыл бұрын
Thank you! From Argentina
@irumidesu92364 жыл бұрын
dude, thanks for explaining most of the basics!
@GeorgePap993 жыл бұрын
Bro, you help a lot with your vids!
@Mei-ChiShih2 жыл бұрын
Excellent video
@realneosi4 жыл бұрын
HOW DID I MISS THIS UPLOAD 🤩
@vincenrow71903 жыл бұрын
You made it so clear step by step, great tutorial, best so far. Just wonder if u could make a video about custom object detecting using tensorflow keras on google colab, I've searched all around the youtube, all of the videos about this topic is kinda frustrating and dispointing, they teach people in a complex way, i'm a lazy man, really like the way you teaching 🍺
@Kingsohio3 жыл бұрын
This is dope bruh! Thanks for video
@Veguinho3 жыл бұрын
Great tutorial! Thanks dude!
@phan50013 жыл бұрын
Thank you so much! This is very helpful for my project!
@lokguanlim74204 жыл бұрын
Learned a lot. Thank you so much!
@KeithGalli4 жыл бұрын
You're welcome!
@lorryzou93672 жыл бұрын
The pooling size of the MaxPooling layer is 2, which is too small to represent the image. If you set the pool_size to (5, 5), the test accuracy will be 80%.
@manu93ize4 жыл бұрын
Congrats man 🙏 finally got monetized .
@ВячеславЗахаров-х1ы4 жыл бұрын
Thank you for the great video!!!
@moseskioko78204 жыл бұрын
good stuff, thanks for the sharing knowledge
@prakharkaushik52004 жыл бұрын
So how do I use this model to make predictions
@hawaabasheer523911 ай бұрын
Where can I find the series of Keras and tensorflow videos?
@haseenabadulla3208 Жыл бұрын
Can you please explain how to load the data if saved locally but in different folders, that is, test images in one folder, train images in folders 0, 1 and 2 as per their types? Thank you.
@hungnguyenngocduy20884 жыл бұрын
Hi Keith, If I want to use a dataset that is already on my computer instead of downloaded from the Internet, how do I do it! Much thanks :-)
@JO-ej3nh3 жыл бұрын
I was trying to use the cat and dog dataset but the shape on shows the size of the samples and nothing else. Also there is only train data and only test data. Any solutions?
@digigoliath4 жыл бұрын
Awesome!! TQVM!
@notrevealable3 жыл бұрын
Thank you so much!!
@dhainik.suthar3 жыл бұрын
How to use this model for real time image classification ?
@andrehoffman68874 жыл бұрын
Always good to hear you, Keith. By the way, what'd you recommend for people to get a first job using CNN's? Thanks a lot
@woonie31344 жыл бұрын
How can u extract the label of a classified image when working with a large dataset? I would like to classify food image and recommend recipes based on the label identified but I am not understanding how to do this. I WOULD kindly ask a tutorial on this matter. There is barely information on food related projects plz
@YazeedAlkosai4 жыл бұрын
fruitful video, hope to see more in the 3D shape model using CNN with Keras. what if I have an object of 3D and need to train and predict the feature shape as measuring the shape by using CNN prediction and accuracy ?
@jongcheulkim72843 жыл бұрын
Thank you so much^^
@davidadu11134 жыл бұрын
Your Pandas tuto was so great. It has urged me to go further. Can you do a tuto on how to deploy a machine learning model in django?
@joseph30364 жыл бұрын
That is easily done using Streamlit, checkout this video. m.kzbin.info/www/bejne/l3K0lmumoaysZ68
@parpithovas4 жыл бұрын
thank you. great job!
@aisham.yousuf57722 жыл бұрын
how to load our own dataset (pictures/images of objects) instead of using one of the existing dataset of tensorflow?
@KeithGalli2 жыл бұрын
I personally like using an ImageGenerator & the flow from directory methods in Keras. Here is a link you can read more about that: datascience.stackexchange.com/questions/65979/what-is-the-correct-way-to-call-keras-flow-from-directory-method
@WhiteError374 жыл бұрын
Keith, is it possible to predict where something is via a signal strength value and it’s lat and lng? So the higher the signal strength the closer you are to it. I’m struggling to write this in code form basically like a weighted median value but the Ai does the work and adjusts the weights. All that the model needs to output is a lat and lng of where it thinks the signal is coming from.
@thezeroquotient4 жыл бұрын
Insightful!
@mohamadalemi25964 жыл бұрын
is there any paper base on your tutorial? I want use it for my university project but it should be relative to specific paper (nice to be in ISA)
@dab300121512274 жыл бұрын
Thank you Keith for such a lovely video. While running the code "model.evaluate(test_image, test_label)", I got below error. I am not sure why train and test size should be same. "ValueError: Data cardinality is ambiguous: x sizes: 2520 y sizes: 372 Please provide data which shares the same first dimension". I checked the shape of train_images and test_images and they are same "(300, 300, 1)"
@Nadelaev4 жыл бұрын
Thanks for your videos, man! But can you do some of PyTorch examples?
@KeithGalli4 жыл бұрын
That is something that I want to do, but I don't have it on the immediate roadmap. Think it would require a decent amount of planning to do properly and want to focus on some other video topics before diving into PyTorch.
@Nadelaev4 жыл бұрын
@@KeithGalli gonna keep waiting! appreciate your work)
@ayencoscolfield33124 жыл бұрын
Same here too eagerly waiting for a deep learning pytorch video examples from our man Keith Gaili
@faizrazadec11 ай бұрын
While showing the example using "fig = tfds.show_examples(info, ds_train)" It'll not work, it'll just throw an error, this signature has been modified from (info, ds_train) to (ds_train, info), so change it in your code...
@jackoverstreet28354 жыл бұрын
If anyone is using Anaconda and importing the TensorFlow Dataset through pip isn't working then try: conda install -c anaconda tensorflow-datasets in the Anaconda Prompt, it worked for me.
@brandonruiz17462 жыл бұрын
hey keith hope you are well bro. I was hoping you could do a video on this same sort of stuff but doing it by using google drive. I have datasets for training images and testing images in my drive with a csv for each containing their forresponding labels. Thoughts?
@KeithGalli2 жыл бұрын
I have a similar video that is already filmed going over similar stuff. It got delayed by the sponsor so I'm not a exactly sure when I can post it
@DanielWeikert4 жыл бұрын
Thanks. Why exactly did you keep the red color channel?
@KeithGalli4 жыл бұрын
Ultimately we could have kept any of the color channels and the performance would remain roughly the same. Each of the color channels would produce a pretty similar grey scale image. No real reason I took red specifically other than I thought it made sense to just use index 0.
@DanielWeikert4 жыл бұрын
@@KeithGalli ok thanks, so far I have always seen converting the color image to rgb upfront so I was wondering.
@seraf_in_._._._._._._._._._._4 жыл бұрын
Thank you for the nicely explained video! Helped me a lot. One question: If i use 64 filters in the first layer and 32 in the second (I'm talking about the net architecture around min 30), will i have 64*32=2048 filters in the second layer? Thanks!
@igordovgan75124 жыл бұрын
Thank you
@tinsp2534 жыл бұрын
Hi Keith, great job. I have learned a lot from your videos. Hope you will produce more. By the way, I have followed your video and the image classification work as expected. How can I predict one single image? When I pass in test_images[0], the predict function return "... expected ndim=4, found ndim=3 ...." obviously it is expecting 4 dimensional array.
@KeithGalli4 жыл бұрын
I think you could pass it in as predict(np.array(test_images[0])) and it will work. Glad you have liked some of my videos! :)
@tinsp2534 жыл бұрын
@@KeithGalli I do this: print("Predict: ", np.round(best_model.predict(np.array(test_images[0])))) and the result is still the same as below "ValueError: Input 0 of layer sequential is incompatible with the layer: expected ndim=4, found ndim=3. Full shape received: [None, 300, 1]"
@azzmaniac41393 жыл бұрын
You should try this : best_model.predict(np.array(test_images))[your_number] and it'll work!!
@saketshetty2 жыл бұрын
@@azzmaniac4139 When I'm prediction the model based on how you told it's returning an ndarray instead of the label, any idea how to tackle it?
@sdiabr67924 жыл бұрын
I can't thank you enough man Really amazing stuff Quick question Do you have any competitive programming background? And if so, could you give some tips on how to get better at it? Thanks so much man
@aresagathos20753 жыл бұрын
Mnist example link in description points to 404 page
@siddharthmani95884 жыл бұрын
Why are you using epochs = 5? aren't they a little less?
@joseph30364 жыл бұрын
To save some time.
@siddharthmani95884 жыл бұрын
@@joseph3036 Is there an ideal number for the total epochs one must run?
@joseph30364 жыл бұрын
10 epochs have worked well for me so far, too many epochs will cause overfitting. stackoverflow.com/questions/47421951/keras-optimal-epoch-selection
@soybeanz85824 жыл бұрын
keith please make a video about the drawing app i send its cool it took hours to make
@soybeanz85824 жыл бұрын
do the drawing app i put the code
@soybeanz85824 жыл бұрын
keith i send you a code on your turtle graphics video its a drawing app can you put it in a video